АСПЕКТЫ ВИЛОЧКОВОЙ ЖЕЛЕЗЫ (ТИМУСА) ДЕТСКОГО ВОЗРАСТА (ЧАСТЬ IV). ТИМУС И COVID-19


Ровда Ю.И., Ведерникова А.В., Миняйлова Н.Н., Шабалдин А.В., Шмакова О.В., Черных Н.С., Строева В.П.

Аннотация


На данном этапе развития иммунологии еще сложно провести грань разграничения функций центральных и периферических органов иммунной системы, клеточных популяций кроветворной системы, нервно-эндокринной и соединительной ткани, обеспечивающих постоянство внутренней среды, неспецифических факторов защиты (и т.п.). Тем не менее, время разрешит эту задачу и появится возможность комплиментарного лечебного и профилактического контроля за инфекционным процессом, опухолевым ростом, аутоагрессией, трансплантацией органов и тканей и т.д. Данная статья – это попытка приблизится к пониманию основной или опосредованной роли вилочковой железы в сложном реципрокном процессе взаимодействия вышеперечисленных органов и систем в противостоянии такой вирусной инфекции, как COVID-19.


Ключевые слова


COVID-19; дети; вилочковая железа; тимус

Полный текст:

Full Text HTML Full Text PDF

Литература


Cao Q, Chen YC, Chen CL, Chiu CH. SARS-CoV-2 infection in children: transmission dynamics and clinical characteristics. J Formos Med Assoc. 2020; 119: 670-673

Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007; 211: 144-156

Garly ML, Trautner SL, Marx C, Danebod K, Nielsen J, Ravn H, et al. Thymus size at 6 months of age and subsequent infant mortality. J Pediatr. 2008; 153: 683-688

Drabkin MJ, Meyer JI, Kanth N, Lobel S, Fogel J, Grossman J, Krumenacker JH. Age-stratified patterns of thymic involution on multidetector CT. J Thorac Imaging. 2018; 33: 409-416

Zhang Y, Chua SJr. Leptin function and regulation. Compr Physiol. 2017; 8(1): 351-369

Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007; 211: 144-156

Güneş H, Dinçer S, Acıpayam C, Yurttutan S, Özkars MY. What chances do children have against COVID-19? Is the answer hidden within the thymus? Eur J Pediatr. 2021; 180(3): 983-986. doi: 10.1007/s00431-020-03841-y

Palmer S, Cunniffe N, Donnelly R. COVID-19 hospitalization rates rise exponentially with age, inversely proportional to thymic T-cell production. J R Soc Interface. 2021; 18(176): 20200982. doi: 10.1098/rsif.2020.0982

Kellogg C, Equils O. The role of the thymus in COVID-19 disease severity: implications for antibody treatment and immunization. Hum Vaccin Immun other. 2021; 17(3): 638-643. doi: 10.1080/21645515.2020.1818519

Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998; 396(6712) :690-695. doi:10.1038/25374

Picker LJ, Treer JR, Ferguson-Darnell B, Collins PA, Buck D, Terstappen LW. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J Immunol. 1993; 150: 1105-1121

Çakmak V, Yılmaz A, Sarı T, Çakmak P, Özen M, Herek D, Oskay A. Evaluation of the chest computed tomography and hemogram data in patients with COVID-19: the importance of thymus. Turk J Med Sci. 2021; 51(3): 991-1000. doi: 10.3906/sag-2007-306

Wang W, Thomas R, Oh J, Su DM. Thymic Aging May Be Associated with COVID-19 Pathophysiology in the Elderly. Cells. 2021; 10(3): 628. doi: 10.3390/cells10030628

Raynor J, Lages CS, Shehata H, Hildeman DA, Chougnet CA. Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol. 2012; 24: 482-487

Tsukamoto H, Clise-Dwyer K, Huston GE, Duso DK, Buck AL, Johnson LL, et al. Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc Natl Acad Sci USA. 2009; 106: 18333-18338

Chougnet CA, Tripathi P, Lages CS, Raynor J, Sholl A, Fink P, et al. A Major Role for Bim in Regulatory T Cell Homeostasis. J Immunol. 2010; 186: 156-163

Lins, MP, Smaniotto S. Potential impact of SARS-CoV-2 infection on the thymus. Can J Microbiol. 2020; 67: 1-6

Wang K, Chen W, Zhou YS, Lian JQ, Zhang Z, Du P, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020 [In press]

Heshui Shi, Xiaoyu Han, Nanchuan Jiang, Yukun Cao, Osamah Alwalid, Jin Gu, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020; 20(4): 425-434. doi: 10.1016/S1473-3099(20)30086-4

Hin Chu, Jie Zhou, Bosco Ho-Yin Wong, Cun Li, Zhong-Shan Cheng, Xiang Lin, et al. Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology. 2014; 454-455: 197-205. doi: 10.1016/j.virol.2014.02.018

Zhou J, Chu H, Li C, Wong BHY, Cheng ZS, Poon VKM, Sun T, Lau CCY, Wong KKY, Chan JYW, Chan JFW, To KKW, Chan KH, Zheng BJ, Yuen KY. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis. 2014; 209: 1331-1342

Yaqinuddin A, Kashir J. Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents. Med Hypotheses. 2020; 140: 109777. doi: 10.1016/j. mehy.2020.109777

Cuvelier P, Roux H, Couëdel-Courteille A, Dutrieux J, Naudin C, Charmeteau de Muylder B, et al. Protective reactive thymus hyperplasia in COVID-19 acute respiratory distress syndrome. Crit Care. 2021; 25(1): 4. doi: 10.1186/s13054-020-03440-1

Abramov D. (2021) Scientists have determined the specificity of the immune response to coronavirus //website ria.ru 09/21/2021. Russian (Абрамов Д. (2021) Ученые определили специфику иммунного ответа на коронавирус //сайт ria.ru 21.09.2021) https://ria.ru/20210921/koronavirus-1751133569.html

Bregel LV, Kostik MM, Fell LZ, Efremova OS, Soboleva MK, Krupskaya TS, Matyunova AE. Kawasaki disease and multisystem inflammatory syndrome in children with COVID-19 infection. Pediatrics. 2020; 99(6): 209-219. Russian (Брегель Л.В., Костик М.М., Фелль Л.З., Ефремова О.С., Соболева М.К., Крупская Т.С., Матюнова А.Е. Болезнь Кавасаки и мультисистемный воспалительный синдром при инфекции COVID-19 детей //Педиатрия. 2020. Т. 99, № 6. С. 209-219.) doi: 10.24110/0031-403X-2020-99-6-209-219

Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association. Eur Heart J. 2020; 41: 1858

Whittaker E, Bamford A, Kenny J, Kaforou M, Jones C, Shah P, et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA. 2020; 324(3): 259-269

Bunyavanich S, DoA, VicencioA. Nasal Gene Expres – sion of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020; 323(23): 2427-2429

Sharif-Askari NS, Sharif-Askari FS, Alabed M, Temsah M-H, Al Heialy S, Hamid Q, Halwani R. Airways Expression of SARS-CoV-2 Receptor, ACE2, and TMPRS S2 Is Lower in Children Than Adults and Increases with Smoking and COPD. Mol Ther Methods Clin Dev. 2020; 18: 1-6. doi: 10.1016/j.omtm.2020.05.013

Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17(5): 259-260

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620-2629

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92(4): 424-432

Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, et al. RETRACTED ARTICLE: SARS-CoV-2 infects T-lymphocytes through its spike protein-mediated membrane fusion. Cell Mol Immunol. 2020; 1-3: https://doi.org/10.1038/s41423-020-0424-9

Manjili RH, Zarei M, Habibi M, Manjili MH. COVID-19 as an Acute Inflammatory Disease. J Immunol. 2020; 205(1): 12-19

Wu L, O'Kane AM, Peng H, Bi Y, Motriuk-Smith D, Ren J. SARS-CoV-2 and cardiovascular complications: From molecular mechanisms to pharmaceutical management. Biochem Pharmacol. 2020; 178: 114114

Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506

Rüster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006; 17(11): 2985-2991

Liu X, Liu Y, Wang L, Hu L, Liu D, Li J. Analysis of the prophylactic effect of thymosin drugs on COVID-19 for 435 medical staff: A hospital-based retrospective study. J Med Virol. 2021; 93(3): 1573-1580. doi: 10.1002/jmv.26492

Naylor PH, Mutchnick MG. Immunotherapy for hepatitis B in the direct acting antiviral era: Reevaluating the thymosinα1 efficacy trials in the light of a combination therapy approach. J Viral Hepat. 2018; 25(1): 4-9

Matteucci C, Grelli S, Balestrieri E, Minutolo A, Argaw-Denboba A, Macchi B, et al. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol. 2017; 12(2): 141-155. doi: 10.2217/fmb-2016-0125

Yueping Liu, Yue Pan, Zhenhong Hu, Ming Wu, Chenhui Wang, Zeqing Feng, et al. Thymosin Alpha 1 Reduces the Mortality of Severe Coronavirus Disease 2019 by Restoration of Lymphocytopenia and Reversion of Exhausted T Cells. Clin Infect Dis. 2020; 71(16): 2150-2157. doi: 10.1093/cid/ciaa630

Khavinson VK, Kuznik BI, Trofimova SV, Volchkov VA, Rukavishnikova SA, Titova ON, et al. Results and Prospects of Using Activator of Hematopoietic Stem Cell Differentiation in Complex Therapy for Patients with COVID-19. Stem Cell Rev Rep. 2021; 17(1): 285-290. doi: 10.1007/s12015-020-10087-6

Henson SM, Snelgrove R, Hussell T, Wells DJ, Aspinall R. An IL-7 Fusion Protein That Shows Increased Thymopoietic Ability. J Immunol. 2005; 175: 4112-4118

Laterre PF, François B, Collienne C, Hantson P, Jeannet R, Remy KE, Hotchkiss RS. Association of Interleukin 7 Immunotherapy with Lymphocyte Counts Among Patients with Severe Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. 2020; 3: e2016485

Monneret G, De Marignan D, Coudereau R, Bernet C, Ader F, Frobert E, et al. Immune monitoring of interleukin-7 compassionate use in a critically ill COVID-19 patient. Cell Mol Immunol. 2020; 17: 1001-1003

Lages CS, Lewkowich I, Sproles A, Wills-Karp M, Chougnet C. Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/ PD-L1 pathway. Aging Cell. 2010; 9: 785-798

Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 2009; 460(7251): 108-112. doi: 10.1038/nature08155

Mannick JB, Morris M, Hockey H-U.P, Roma G, Beibel M, Kulmatycki K, et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med. 2018; 10(449): eaaq1564. doi: 10.1126/scitranslmed.aaq1564

Kennedy RB, Ovsyannikova IG, Haralambieva IH, Oberg AL, Zimmermann MT, Grill DE, Poland GA. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Front Immunol. 2016; 7: 450

Maciolek J, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol. 2014; 27: 60-74

Elahi A, Sabui S, Narasappa NN, Agrawal S, Lambrecht NW, Agrawal A, Said HM. Biotin Deficiency Induces Th1- and Th17-Mediated Proinflammatory Responses in Human CD4+ T Lymphocytes via Activation of the mTOR Signaling Pathway. J Immunol. 2018; 200: 2563-2570

Zhang F, Liu G, Li D, Wei C, Hao J. DDIT4 and Associated lncDDIT4 Modulate Th17 Differentiation through the DDIT4/TSC/mTOR Pathway. J Immunol. 2018; 200: 1618-1626

Tang L, Yin Z, Hu Y, Mei H. Controlling Cytokine Storm Is Vital in COVID-19. Front Immunol. 2020; 11: 570993

Kempuraj D, Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Khan A, et al. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist. 2020; 26: 402-414

Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. High TNF-α levels in resting B cells negatively correlate with their response. Exp Gerontol. 2014; 54: 116-122

Khan SI, Shihata WA, Andrews KL, Lee MKS, Moore X-L, Jefferis A-M, et al. Effects of high- and low-dose aspirin on adaptive immunity and hypertension in the stroke-prone spontaneously hypertensive rat. FASEB J. 2019; 33(1): 1510-1521. doi: 10.1096/fj.201701498RR

Alexia C, Cren M, Louis-Plence P, Vo D-N, El Ahmadi Y, Dufourcq-Lopez E, et al. Polyoxidonium® activates cytotoxic lymphocyte responses through dendritic cell maturation: Clinical effects in breast cancer. Front Immunol. 2019; 10: 2693. doi: 10.3389/fimmu.2019. 02693

Talayev VYu, Matveichev AV, Zaichenko IE, Talaeyva MV, Babaykina ON, Voronina EV. Polyoxidonium® vaccine adjuvant enhances the immune response to low dose of influenza antigens. Scientific support of anti-epidemic protection of the population: urgent problems and solutions: collection of scientific papers. Nizhny Novgorod: Remedium Volga Region, 2019. P. 363-365. Russian (Талаев В.Ю., Матвеичев А.В., Заиченко И.Е., Талаева М.В., Бабайкина О.Н., Воронина Е.В. Вакцинный адъювант Полиоксидоний® усиливает иммунный ответ на низкую дозу антигенов гриппа //Научное обеспечение противоэпидемической защиты населения: актуальные проблемы и решения: сборник научных трудов. Н.Новгород: Ремедиум Приволжье, 2019. С. 363-365)

Kostinov MP, Markelova EV, Svitich OA, Polishchuk VB. Immune mechanisms of SARS-CoV-2 and potential drugs in the prevention and treatment of COVID-19. Pulmonology. 2020; 30(5): 700-708. Russian (Костинов М.П., Маркелова Е.В., Свитич О.А., Полищук В.Б. Иммунные механизмы SARS-CoV-2 и потенциальные препараты для профилактики и лечения COVID-19 //Пульмонология. 2020. Т. 30, № 5. С. 700-708)


Статистика просмотров

Загрузка метрик ...

Ссылки

  • На текущий момент ссылки отсутствуют.