ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА В АКУШЕРСТВЕ ДЛЯ ДИАГНОСТИРОВАНИЯ ПОРОКОВ РАЗВИТИЯ ПЛОДА И ПРОФИЛАКТИКИ ВОЗНИКНОВЕНИЯ ЗАБОЛЕВАНИЙ


Литвинова Е.В., Носкова О.В.

Аннотация


Цель работы – изучить возможности использования искусственного интеллекта в акушерстве для диагностирования пороков развития плода и профилактики возникновения различных заболеваний.

Материалы и методы работы. Поиск научной информации проводился с использованием отечественных и зарубежных интернет-ресурсов сети Google Scholar, PubMed, Medscape, баз данных Scopus и Web of Science и т.п.; а также на веб-страницах международных медицинских организаций по определенным ключевым словам: искусственный интеллект, использование искусственного интеллекта в акушерстве и гинекологии, диагностика пороков развития плода, профилактика гинекологических заболеваний, УЗИ в акушерстве и гинекологии, триместры беременности, телемедицина в акушерстве и гинекологии. Глубина поиска составила 10 лет.

Результаты. Показана эффективность применения искусственного интеллекта и различных алгоритмов на его основе для улучшения анализа двумерных (2D) и трехмерных (3D) УЗИ изображений структур плода, оценки функций органов и диагностики заболеваний. Определены преимущества применения искусственного интеллекта в УЗИ в акушерстве, а также недостатки и перспективы его использования.

Показаны значительные успехи в применении искусственного интеллекта в области акушерства и гинекологии с определением необходимости дальнейших исследований и усовершенствований в отношении достижения универсальности и улучшения эффективности многих разработанных моделей. Указано, что в проведенных исследованиях было применено значительное количество механизмов для преодоления дилеммы ограниченной точности, среди которых применена разработка ансамблевых алгоритмов, использование ультразвуковых видео, учет особенностей в дополнительных методах визуализации и другие.

Доказано, что разработка алгоритмов телемедицинской службы УЗИ плода может объединить специализированный центр фетальной медицины и дистанционное акушерское отделение, что позволит обеспечить высококачественное УЗИ и быстрое консультирование специалиста, а также значительно сократить расходы семьи и время на доставку пациента в больничное учреждение. Также показано, что эти методики полезны при проведении транснациональных консультаций ввиду того, что услуги телемедицины и теледиагностики могут значительно повысить доступ к диагностическому акушерскому УЗИ в условиях ограниченных ресурсов. При этом, при получении медицинского образования по акушерству и гинекологии телемедицина и виртуальная реальность становятся новым способом обучения УЗИ на основе симуляции, что значительно улучшает эффективность обучения и сохранения знаний во время обучения.

Заключение. Таким образом, использование искусственного интеллекта при проведении УЗИ плода на разных триместрах беременности помогает клиницистам в диагностике различных состояний и заболеваний, поскольку позволяет повысить эффективность, уменьшить количество ошибочных и пропущенных диагнозов, эффективно улучшить качество медицинских услуг и, наконец, принести пользу пациентам.


Ключевые слова


УЗИ плода; искусственный интеллект; алгоритмы искусственного интеллекта; пороки развития4 триместр

Полный текст:

Full Text HTML

Литература


Abinader R, Warsof SL. Benefits and pitfalls of ultrasound in obstetrics and gynecology. Obstet Gynecol Clin North Am. 2019; 46: 367. doi: 10.1016/j.ogc.2019.01.011

Ondeck CL, Pretorius D, McCaulley J, Kinori M, Maloney T, Hull A, Robbins SL. Ultrasonographic prenatal imaging of fetal ocular and orbital abnormalities. Surv Ophthalmol. 2018; 63: 745–53. doi: 10.1016/j.survophthal.2018.04.006

Bellussi F, Ghi T, Youssef A, Salsi G, Giorgetta F, Parma D, et al. The use of intrapartum ultrasound to diagnose malpositions and cephalic malpresentations. Am J Obstet Gynecol. 2017; 217: 633-641. doi: 10.1016/j.ajog.2017.07.025

Pramanik M, Gupta M, Krishnan KB Enhancing reproducibility of ultrasonic measurements by new users, Proc. SPIE 8673, Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, 86730Q (28 March 2013). doi: 10.1117/12.2008032

Carneiro G, Georgescu B, Good S. Knowledge-Based Automated Fetal Biometrics Using Syngo Auto OB. Erlangen: Siemens Medical Solutions (2008)

Espinoza J, Good S, Russell E, Lee W. Does the use of automated fetal biometry improve clinical work flow efficiency? J Ultrasound Med. 2013; 32: 847-850. doi: 10.7863/ultra.32.5.847

Dhombres F, Maurice P, Guilbaud L, Franchinard L, Dias B, Charlet J, et al. A novel intelligent scan assistant system for early pregnancy diagnosis by ultrasound: clinical decision support system evaluation study. J Med Internet Res. 2019; 21: e14286. doi: 10.2196/14286

Smeets NA, Dvinskikh NA, Winkens B, Oei SG. A new semi-automated method for fetal volume measurements with three-dimensional ultrasound: preliminary results. Prenat Diagn. 2012; 32: 770-776. doi: 10.1002/pd.3900

Yang X, Yu L, Li S, Wen H, Luo D, Bian C, et al. Towards automated semantic segmentation in prenatal volumetric ultrasound. IEEE Trans Med Imaging. 2019; 38: 180-193. doi: 10.1109/TMI.2018.2858779

Ryou H, Yaqub M, Cavallaro A, Papageorghiou AT, Alison Noble J. Automated 3D ultrasound image analysis for first trimester assessment of fetal health. Phys Med Biol. 2019; 64: 185010. doi: 10.1088/1361-6560/ab3ad1

Moratalla J, Pintoffl K, Minekawa R, Lachmann R, Wright D, Nicolaides KH. Semi-automated system for measurement of nuchal translucency thickness. Ultrasound Obstet Gynecol. 2010; 36: B412-416. doi: 10.1002/uog.7737

Nie S, Yu J, Chen P, Wang Y, Zhang JQ. Automatic detection of standard sagittal plane in the first trimester of pregnancy using 3-D ultrasound data. Ultrasound Med Biol. 2017; 43: 286-300. doi: 10.1016/j.ultrasmedbio.2016.08.034

Sobhaninia Z, Rafiei S, Emami A, Karimi N, Najarian K, Samavi S, Soroushmehr SMR. Fetal ultrasound image segmentation for measuring biometric parameters using multi-task deep learning. Annu Int Conf IEEE Eng Med Biol Soc. 2019; 2019: 6545-6548. doi: 10.1109/EMBC.2019.8856981

Van den Heuvel TLA, Petros H, Santini S, de Korte CL, van Ginneken B. Automated fetal head detection and circumference estimation from free-hand ultrasound sweeps using deep learning in resource-limited countries. Ultrasound Med Biol. 2019; 45: 773-785. doi: 10.1016/j.ultrasmedbio.2018.09.015

Van den Heuvel TLA, de Bruijn D, de Korte CL, Ginneken BV. Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE. 2018); 13: e0200412. doi: 10.1371/journal.pone.0200412

Yang X, Wang X, Wang Y, Dou H, Li S, Wen H, et al. Hybrid attention for automatic segmentation of whole fetal head in prenatal ultrasound volumes. Comput Methods Programs Biomed. 2020; 194: 105519. doi: 10.1016/j.cmpb.2020.105519

Yang X, Li HM, Liu L, Ni D. Scale-aware auto-context-guided Fetal US segmentation with structured random forests. BIO Integr. 2020; 1: 118-129. doi: 10.15212/bioi-2020-0016

Chen X, He M, Dan T, Wang N, Lin M, Zhang L, et al. Automatic measurements of fetal lateral ventricles in 2D ultrasound images using deep learning. Front Neurol. 2020; 11: 526. doi: 10.3389/fneur.2020.00526

Pluym ID, Afshar Y, Holliman K, Kwan L. Accuracy of three-dimensional automated ultrasound imaging of biometric measurements of the fetal brain. Ultrasound Obstetr Gynecol. 2020; 57: 798-803. doi: 10.1002/uog.22171

Yu Z, Tan EL Ni D, Qin J, Chen S, Li S, et al. A deep convolutional neural network based framework for automatic fetal facial standard plane recognition. IEEE J Biomed Health Inform. 2018) 22: 874-885. doi: 10.1109/JBHI.2017.2705031

Tsai PY, Chen HC, Huang HH, Chang CH, Fan PS, Huang CI, et al. A new automatic algorithm to extract craniofacial measurements from fetal three-dimensional volumes. Ultrasound Obstet Gynecol. 2012; 39: 642-647. doi: 10.1002/uog.10104

Caetano AC, Zamarian AC, Araujo JE, Cavalcante RO, Simioni C, Silva CP, et al. Assessment of intracranial structure volumes in fetuses with growth restriction by 3-dimensional sonography using the extended imaging virtual organ computer-aided analysis method. J Ultrasound Med. 2015; 34: 1397-1405. doi: 10.7863/ultra.34.8.1397

Namburete AIL, Stebbing RV, Kemp B, Yaqub M, Papageorghiou AT, Noble AJ. Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med Image Anal. 2015; 21: 72-86. doi: 10.1016/j.media.2014.12.006

Grandjean GA, Hossu G, Bertholdt C, Noble P, Morel O, Grangé G. Artificial intelligence assistance for fetal head biometry: assessment of automated measurement software. Diagn Interv Imaging. 2018; 99: 709-716. doi: 10.1016/j.diii.2018.08.001

Xie B, Lei T, Wang N, Cai H, Xian J, He M, et al. Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. Int J Comput Assist Radiol Surg. 2020; 15: 1303-1312. doi: 10.1007/s11548-020-02182-3

Jang J, Park Y, Kim B, Lee SM, Kwon JY, Seo JK. Automatic estimation of fetal abdominal circumference from ultrasound images. IEEE J Biomed Health Inform. 2018; 22: 1512-1520. doi: 10.1109/JBHI.2017.2776116

Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng PA. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform. 2015; 19: 1627-1636. doi: 10.1109/JBHI.2015.2425041

Cobo T, Bonet-Carne E, Martínez-Terrón M, Perez-Moreno A, Elías N, Luque J, et al. Feasibility and reproducibility of fetal lung texture analysis by automatic quantitative ultrasound analysis and correlation with gestational age. Fetal Diagn Ther. 2012; 31: 230-236. doi: 10.1159/000335349

Ghorayeb SR, Bracero LA, Blitz MJ, Rahman Z, Lesser ML. Quantitative ultrasound texture analysis for differentiating preterm from term fetal lungs. J Ultrasound Med. 2017; 36: 1437-443. doi: 10.7863/ultra.16.06069

Perez-Moreno A, Dominguez M, Migliorelli F, Gratacos E, Palacio M, Bonet-Carne E. Clinical feasibility of quantitative ultrasound texture analysis: a robustness study using fetal lung ultrasound images. J Ultrasound Med. 2019; 38: 1459-1476. doi: 10.1002/jum.14824

Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat Med. 2021; 27: 882-8891. doi: 10.1038/s41591-021-01342-5

Femina M, Raajagopalan S. Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer-based Chan-Vese model. Med Biol Eng Comput. 2019; 57: 1763-1782. doi: 10.1007/s11517-019-01991-2

Chaoui R, Abuhamad A, Martins J, Heling KS. Recent development in three and four dimension fetal echocardiography. Fetal Diagn Ther. 2020; 47: 345-353. doi: 10.1159/000500454

Bridge CP, Ioannou C, Noble JA. Automated annotation and quantitative description of ultrasound videos of the fetal heart. Med Image Anal. 2017; 36: 147-161. doi: 10.1016/j.media.2016.11.006

Xu L, Liu M, Shen Z, Wang H, Liu X, Wang X, et al. DW-Net: a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography. Comput Med Imaging Graph. 2020; 80: 101690. doi: 10.1016/j.compmedimag.2019.101690

Dong J, Liu S, Liao Y, Wen H, Lei B, Li S, et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J Biomed Health Inform. 2020; 24: 931-942. doi: 10.1109/JBHI.2019.2948316

Barreto EQ, Araujo JE, Martins WP, Rolo LC, Milani HJ, Nardozza LM, et al. New technique for assessing fetal heart growth using three-dimensional ultrasonography: description of the technique and reference curves. J Matern Fetal Neonatal Med. 2015; 28: 1087-1093. doi: 10.3109/14767058.2014.943176

Rolo LC, Santana EF, da Silva PH, Costa Fda S, Nardozza LM, Tonni G, et al. Fetal cardiac interventricular septum: volume assessment by 3D/4D ultrasound using spatio-temporal image correlation (STIC) and virtual organ computer-aided analysis (VOCAL). J Matern Fetal Neonatal Med. 2015; 28:1388-1393. doi: 10.3109/14767058.2014.955005

Yeo L, Markush D, Romero R. Prenatal diagnosis of tetralogy of Fallot with pulmonary atresia using: Fetal Intelligent Navigation Echocardiography (FINE). J Matern Fetal Neonatal Med. 2019; 32: 3699-3702. doi: 10.1080/14767058.2018.1484088

Xie HN, Wang N, He M, Zhang LH, Cai HM, Xian JB, et al. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet Gynecol. 2020; 56: 579-587. doi: 10.1002/uog.21967

Shozu K, Komatsu M, Sakai A, Komatsu R, Dozen A, Machino H, et al. Model-agnostic method for thoracic wall segmentation in fetal ultrasound videos. Biomolecules. 2020; 10: 1691. doi: 10.3390/biom10121691

Dozen A, Komatsu M, Sakai A, Komatsu R, Shozu K, Machino H, et al. Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information. Biomolecules. 2020; 10: 1526. doi: 10.3390/biom10111526

Torrents-Barrena J, Monill N, Piella G, Gratacós E, Eixarch E, Ceresa M, et al. Assessment of radiomics and deep learning for the segmentation of fetal and maternal anatomy in magnetic resonance imaging and ultrasound. Acad Radiol. 2021; 28: 173-188. doi: 10.1016/j.acra.2019.11.006

Smith VJ, Marshall A, Lie MLS, Bidmead E, Beckwith B, Van Oudgaarden E, et al. Implementation of a fetal ultrasound telemedicine service: women's views and family costs. BMC Pregnancy Childbirth. 2021; 21: 38. doi: 10.1186/s12884-020-03532-4

Toscano M, Marini TJ, Drennan K, Baran TM, Kan J, Garra B, et al. Testing telediagnostic obstetric ultrasound in Peru: a new horizon in expanding access to prenatal ultrasound. BMC Pregnancy Childbirth. 2021; 21: 328. doi: 10.1186/s12884-021-03720-w

Ebert J, Tutschek B. Virtual reality objects improve learning efficiency and retention of diagnostic ability in fetal ultrasound. Ultrasound Obstet Gynecol. 2019; 53: 525-528. doi: 10.1002/uog.19177

Popovici R, Pristavu A, Sava A. Three dimensional ultrasound and hdlive technology as possible tools in teaching embryology. Clin Anat. 2017; 30: 953-957. doi: 10.1002/ca.22963


Ссылки

  • На текущий момент ссылки отсутствуют.