УЧАСТИЕ КАТЕХОЛАМИНОВ В ПАТОГЕНЕЗЕ ДИАБЕТИЧЕСКОЙ КАРДИОМИОПАТИИ


Чаулин А.М., Григорьева Ю.В., Дупляков Д.В.

Аннотация


В нормальных условиях симпатическая нервная система посредством своих основных медиаторов (катехоламинов) играет важную роль в функционировании сердечно-сосудистой системы. Однако чрезмерная и длительная активация симпатической нервной системы, наблюдаемая при ряде патологических состояний (стрессе, сахарном диабете и др.), вызывает повышение уровней катехоламинов в крови и миокарде. В данной обзорной статье мы рассматриваем основные механизмы участия катехоламинов в патогенезе диабетической кардиомиопатии.

Ключевые слова


сахарный диабет; катехоламины; симпатическая нервная система; кальций, Са2+; активные формы кислорода; окислительный стресс

Полный текст:

Full Text HTML Full Text PDF

Литература


World Health Organization. URL: http://www.who.int/news-room/fact-sheets/detail/diabetes

Notkins AL. The causes of diabetes. Sci. Am. 1979; 241(5): 62-73. DOI: 10.1038/scientificamerican1179-62

Regan TJ, Ahmed S, Haider B, Moschos C, Weisse A. Diabetic cardiomyopathy: experimental and clinical observations. N J Med. 1994; 91(11): 776-778. URL: https://www.ncbi.nlm.nih.gov/pubmed/7808691

Christlieb AR. Diabetes and hypertensive vascular disease. Mechanisms and treatment. Am J Cardiol. 1973; 32(4): 592-606. DOI: 10.1016/s0002-9149(73)80051-7

Dhalla NS, Pierce GN, Innes IR, Beamish RE. Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol. 1985; 1(4): 263-281. URL: https://www.ncbi.nlm.nih.gov/pubmed/3850773

Factor SM, Okun EM, Minase T. Capillary microaneurysms in the human diabetic heart. N Engl J Med. 1980; 302(7): 384-388. DOI: 10.1056/NEJM198002143020706

Regan TJ. Congestive heart failure in the diabetic. Annu Rev Med. 1983; 34: 161-168. DOI: 10.1146/annurev.me.34.020183.001113

Shah S. Cardiomyopathy in Diabetes Mellitus. Angiology. 1980; 31(7): 502-504. DOI: 10.1177/000331978003100710

Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ Res. 2018; 122(4): 624-638. doi: 10.1161/CIRCRESAHA.117.311586

Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol. 2018; 9: 1514. doi: 10.3389/fphys.2018.01514

Kenny HC, Abel ED. Heart Failure in Type 2 Diabetes Mellitus. Circ Res. 2019; 124(1): 121-141. doi: 10.1161/CIRCRESAHA.118.311371

Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004; 44(12): 2368-2374. DOI: 10.1016/j.jacc.2004.09.033

Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res. 1998; 40(2): 239-247. DOI: 10.1016/s0008-6363(98)00186-2

Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004; 24(5): 816-823. DOI: 10.1161/01.ATV.0000122852.22604.78

Dhalla NS, Rangi S, Zieroth S, Xu YJ. Alterations in sarcoplasmic reticulum and mitochondrial functions in diabetic cardiomyopathy. Exp Clin Cardiol. 2012; 17(3): 115-120

Dhalla NS, Takeda N, Rodriguez-Leyva D, Elimban V. Mechanisms of subcellular remodeling in heart failure due to diabetes. Heart Fail Rev. 2014; 19(1): 87-99. DOI: 10.1007/s10741-013-9385-8

Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol. 1985; 17(4): 291-306. DOI: 10.1016/s0022-2828(85)80130-9

Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev. 2014; 19(1): 25-33. DOI: 10.1007/s10741-013-9378-7

Dhalla KS, Rupp H, Beamish RE, Dhalla NS. Mechanisms of alterations in cardiac membrane Ca2+ transport due to excess catecholamines. Cardiovasc Drugs Ther. 1996; 10 Suppl 1: 231-238. DOI: 10.1007/bf00120492

Dhalla NS. Formation of Aminochrome Leads to Cardiac Dysfunction and Sudden Cardiac Death. Circ Res. 2018; 123(4): 409-411. DOI: 10.1161/CIRCRESAHA.118.313416

Fushimi H, Inoue T, Kishino B, Nishikawa M, Tochino Y, Funakawa S, et al. Abnormalities in plasma catecholamine response and tissue catecholamine accumulation in streptozotocin diabetic rats: a possible role for diabetic autonomic neuropathy. Life Sci. 1984; 35(10): 1077-1081. DOI: 10.1016/0024-3205(84)90072-9

Hilsted J. Autonomic neuropathy: cardiovascular, hormonal and metabolic studies. Acta Endocrinol Suppl (Copenh). 1980; 238: 139-144

Paulson DJ, Light KE. Elevation of serum and ventricular norepinephrine content in the diabetic rat. Res Commun Chem Pathol Pharmacol. 1981; 33(3): 559-562

Neubauer B, Christensen NJ. Norepinephrine, epinephrine, and dopamine contents of the cardiovascular system in long-term diabetics. Diabetes. 1976; 25(1): 6-10. DOI: 10.2337/diab.25.1.6

Hilsted J, Madsbad S, Krarup T, Sestoft L, Christensen NJ, Tronier B, Galbo H. Hormonal, metabolic, and cardiovascular responses to hypoglycemia in diabetic autonomic neuropathy. Diabetes. 1981; 30(8): 626-633. DOI: 10.2337/diab.30.8.626

Rona G, Chappel CI, Balazs T, Gaudry R. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol. 1959; 67(4): 443-455

Ganguly PK, Dhalla KS, Innes IR, Beamish RE, Dhalla NS. Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circ Res. 1986; 59(6): 684-693. DOI: 10.1161/01.res.59.6.684

Ganguly PK, Beamish RE, Dhalla KS, Innes IR, Dhalla NS. Norepinephrine storage, distribution, and release in diabetic cardiomyopathy. Am J Physiol. 1987; 252(6 Pt 1): E734-739. DOI: 10.1152/ajpendo.1987.252.6.E734

Chaulin AM, Karslyan LS, Grigoriyeva EV, Nurbaltaeva DA, Duplyakov DV. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia. 2019; 59(11): 66-75. DOI: 10.18087/cardio.2019.11.n414. Russian (Чаулин А.М., Карслян Л.С., Григорьева Е.В., Нурбалтаева Д.А., Дупляков Д.В. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека //Кардиология. 2019. Т. 59, № 11. С. 66-75)

Chaulin AM, Duplyakov DV. Increased cardiac troponins, not associated with acute coronary syndrome. Part 1. Cardiology: News, Opinions, Training. 2019; 7(2): 13-23. DOI: 10.24411/2309-1908-2019-12002. Russian (Чаулин А.М., Дупляков Д.В. Повышение кардиальных тропонинов, не ассоциированное с острым коронарным синдромом. Часть 1 //Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 13-23)

Chaulin AM, Duplyakov DV. Increased cardiac troponins, not associated with acute coronary syndrome. Part 2. Cardiology: News, Opinions, Training. 2019; 7(2): 24-35. DOI: 10.24411/2309-1908-2019-12003. Russian (Чаулин А.М., Дупляков Д.В. Повышение кардиальных тропонинов, не ассоциированное с острым коронарным синдромом. Часть 2 //Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 24-35)

Behonick GS, Novak MJ, Nealley EW, Baskin SI. Toxicology update: the cardiotoxicity of the oxidative stress metabolites of catecholamines (aminochromes). J Appl Toxicol. 2001; 21 Suppl 1: S15-22. DOI: 10.1002/jat.793

Costa VM, Carvalho F, Bastos ML, Carvalho RA, Carvalho M, Remiao F. Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Curr Med Chem. 2011; 18(15): 2272-2314. DOI: 10.2174/092986711795656081

Dhalla KS, Ganguly PK, Rupp H, Beamish RE, Dhalla NS. Measurement of adrenolutin as an oxidation product of catecholamines in plasma. Mol Cell Biochem. 1989; 87(1): 85-92. DOI: 10.1007/bf00421086

Hasková P1, Kovarikova P, Koubkova L, Vavrova A, Mackova E, Simunek T. Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radic Biol Med. 2011; 50(4): 537-549. DOI: 10.1016/j.freeradbiomed.2010.12.004

Haskova P1, Koubkova L, Vavrova A, Mackova E, Hruskova K, Kovarikova P, et al. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology. 2011; 289(2-3): 122-131. DOI: 10.1016/j.tox.2011.08.006

Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005; 77(5): 598-625. DOI: 10.1189/jlb.1204697

MacFarlane NG, Miller DJ. Effects of the reactive oxygen species hypochlorous acid and hydrogen peroxide on force production and calcium sensitivity of rat cardiac myofilaments. Pflugers Arch. 1994; 428(5-6): 561-568. DOI: 10.1007/bf00374578

Singal PK, Yates JC, Beamish RE, Dhalla NS. Influence of reducing agents on adrenochrome-induced changes in the heart. Arch Pathol Lab Med. 1981; 105(12): 664-669

Chen AF1, Chen DD, Daiber A, Faraci FM, Li H, Rembold CM, Laher I. Free radical biology of the cardiovascular system. Clin Sci (Lond). 2012; 123(2): 73-91. DOI: 10.1042/CS20110562

Giugliano D, Ceriello A, Paolisso G. Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress? Metabolism. 1995; 44(3): 363-368. DOI: 10.1016/0026-0495(95)90167-1

Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes. 1987; 36(9): 1014-1018. DOI: 10.2337/diab.36.9.1014

Fonseca VA, Stone A, Munshi M, Baliga BS, Aljada A, Thusu K, et al. Oxidative stress in diabetic macrovascular disease: does homocysteine play a role? South Med J. 1997; 90(9): 903-906. DOI: 10.1097/00007611-199709000-00008

Hunt JV, Smith CC, Wolff SP. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes. 1990; 39(11): 1420-1424. DOI: 10.2337/diab.39.11.1420

Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987; 245(1): 243-250. DOI: 10.1042/bj2450243

Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest. 1982; 47(5): 412-426

Kakkar R, Mantha SV, Kalra J, Prasad K. Time course study of oxidative stress in aorta and heart of diabetic rat. Clin Sci (Lond). 1996; 91(4): 441-448. DOI: 10.1042/cs0910441

Mak DH, Ip SP, Li PC, Poon MK, Ko KM. Alterations in tissue glutathione antioxidant system in streptozotocin-induced diabetic rats. Mol Cell Biochem. 1996; 162(2): 153-158. DOI: 10.1007/bf00227543

Corder DW, Heyliger CE, Beamish RE, Dhalla NS. Defect in the adrenergic receptor-adenylate cyclase system during development of catecholamine-induced cardiomyopathy. Am Heart J. 1984; 107(3): 537-542. DOI: 10.1016/0002-8703(84)90097-8

Golfman LS, Takeda N, Dhalla NS. Cardiac membrane Ca(2+)-transport in alloxan-induced diabetes in rats. Diabetes Res Clin Pract. 1996; 31 Suppl: S73-S77. DOI: 10.1016/0168-8227(96)01233-8

Lopaschuk GD, Tahiliani AG, Vadlamudi RV, Katz S, McNeill JH. Cardiac sarcoplasmic reticulum function in insulin- or carnitine-treated diabetic rats. Am J Physiol. 1983; 245(6): H969-76. DOI: 10.1152/ajpheart.1983.245.6.H969

Heyliger CE, Prakash A, McNeill JH. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol. 1987; 252(3 Pt 2): H540-544. DOI: 10.1152/ajpheart.1987.252.3.H540

Makino N, Dhalla KS, Elimban V, Dhalla NS. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol. 1987; 253(2 Pt 1): E202-207. DOI: 10.1152/ajpendo.1987.253.2.E202

Pierce GN, Dhalla NS. Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol. 1985; 1(1): 48-54

Ansari M, Gopalakrishnan S, Kurian GA. Streptozotocin-induced type II diabetic rat administered with nonobesogenic high-fat diet is highly susceptible to myocardial ischemia-reperfusion injury: An insight into the function of mitochondria. J Cell Physiol. 2019; 234(4): 4104-4114. DOI: 10.1002/jcp.27217

Galloway CA, Yoon Y. Mitochondrial dynamics in diabetic cardiomyopathy. Antioxid Redox Signal. 2015; 22(17): 1545-1562. DOI: 10.1089/ars.2015.6293

Martín-Fernández B, Gredilla R. Mitochondria and oxidative stress in heart aging. Age (Dordr). 2016; 38(4): 225-238. DOI: 10.1007/s11357-016-9933-y

Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg. 2018; 1859(9): 940-950. DOI: 10.1016/j.bbabio.2018.05.019

Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic Biol Med. 2018; 129: 155-168. DOI: 10.1016/j.freeradbiomed.2018.09.019

Zhao Y, Ponnusamy M, Dong Y, Zhang L, Wang K, Li P. Effects of miRNAs on myocardial apoptosis by modulating mitochondria related proteins. Clin Exp Pharmacol Physiol. 2017; 44(4): 431-440. DOI: 10.1111/1440-1681.12720

Xue RQ, Sun L, Yu XJ, Li DL, Zang WJ. Vagal nerve stimulation improves mitochondrial dynamics via an M3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med. 2017; 21(1): 58-71. DOI: 10.1111/jcmm.12938

Santin Y, Sicard P, Vigneron F, Guilbeau-Frugier C, Dutaur M, Lairez O, et al. Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure. Antioxid Redox Signal. 2016; 25(1): 10-27. DOI: 10.1089/ars.2015.6522

Izem-Meziane M, Djerdjouri B, Rimbaud S, Caffin F, Fortin D, Garnier A, et al. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol. 2012; 302(3): H665-674. DOI: 10.1152/ajpheart.00467.2011

Sahu BD, Anubolu H, Koneru M, Kumar JM, Kuncha M, Rachamalla SS, Sistla R. Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: possible involvement of mitochondrial dysfunction and apoptosis. Life Sci. 2014; 107(1-2): 59-67. DOI: 10.1016/j.lfs.2014.04.035


Статистика просмотров

Загрузка метрик ...

Ссылки

  • На текущий момент ссылки отсутствуют.