РОЛЬ ПРОПРОТЕИН-КОНВЕРТАЗЫ СУБТИЛИЗИН/КЕКСИН ТИПА 9 (PCSK9) В ПАТОФИЗИОЛОГИИ АТЕРОСКЛЕРОЗА
Аннотация
Повышенная концентрация липопротеинов низкой плотности (ЛПНП) в сыворотке крови, бесспорно, является важнейшим фактором риска возникновения сердечно-сосудистых заболеваний. В настоящее время статины являются наиболее широко используемыми препаратами для лечения пациентов с гиперхолестеринемией, однако у некоторых пациентов резидуальный сердечно-сосудистый риск остается высоким даже после проведения статиновой терапии максимально переносимыми дозами. Относительно недавно обнаруженная белковая молекула − пропротеин-конвертаза субтилизин/кексин типа 9 (PCSK9) стала новой терапевтической мишенью для снижения сывороточных уровней ЛПНП. PCSK9 усиливает деградацию рецепторов липопротеинов низкой плотности (рЛПНП), из-за чего снижается элиминация частиц ЛПНП из кровотока, что приводит к гиперлипидемии и возникновению атеросклероза. Помимо липидных эффектов, PCSK9 обладает также нелипидными функциями, среди которых усиление воспалительных реакций имеет наибольшее значение для патофизиологии атеросклероза. В обзоре также обсуждается возможность использования PCSK9 в качестве диагностического маркера сердечно-сосудистых заболеваний.
Ключевые слова
Литература
Buja LM. Nikolai N. Anitschkow and the lipid hypothesis of atherosclerosis. Cardiovascular Pathology. 2014; 23(3): 183-184. doi: 10.1016/j.carpath.2013.12.004
Goldstein JL, Brown MS. The LDL receptor. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009; 29: 431-438. doi: 10.1161/ATVBAHA.108.179564
Basak A. Inhibitors of proprotein convertases. Journal of Molecular Medicine. 2005; 83(11): 844-855. doi: 10.1007/s00109-005-0710-0
Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003; 100(3): 928-933. doi: 10.1073/pnas.0335507100
Poirier S, Prat A, Marcinkiewicz E, Paquin J, Chitramuthu BP, Baranowski D, et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. Journal of Neurochemistry. 2006; 98(3): 838-850. doi:10.1111/j.1471-4159.2006.03928.x
Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genetics. 2003; 34: 154-156. doi: 10.1038/ng1161
Abifadel M, Rabes JP, Devillers M, Munnich A, Erlich D, Junien C, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009; 30(4): 520-529. doi: 10.1002/humu.20882
Abifadel M, Guerin M, Benjannet S, Rabes JP, Le Goff W, Julia Z, et al. Identification and characterization of new gain-of-function mutations in the PCSK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis. 2012; 223(2): 394-400. DOI: 10.1016/j.atherosclerosis.2012.04.006
Miyake Y, Kimura R, Kokubo Y, Okayama A, Tomoike H, Yamamura T, Miyata T. Genetic variants in PCSK9 in the Japanese population: rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis. 2008; 196(1): 29-36. doi: 10.1016/j.atherosclerosis.2006.12.035
Norata GD, Garlaschelli K, Grigore L, Raselli S, Tramontana S, Meneghetti F, et al. Effects of PCSK9 variants on common carotid artery intima media thickness and relation to ApoE alleles. Atherosclerosis. 2010; 208(1): 177-182. doi: 10.1016/j.atherosclerosis.2009.06.023
Hsu LA, Teng MS, Ko YL, Chang CJ, Wu S, Wang CL, Hu CF. The PCSK9 gene E670G polymorphism affects low-density lipoprotein cholesterol levels but is not a risk factor for coronary artery disease in ethnic Chinese in Taiwan. Clin Chem Lab Med. 2009; 47(2): 154-158. doi: 10.1515/CCLM.2009.032
Cohen JC, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genetics. 2005; 37(2): 161-165. doi: 10.1038/ng1509
Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. The New England Journal of Medicine. 2006; 354(12): 1264-1272
Al-Mohaissen MA, Ignaszewski MJ, Frohlich J, Ignaszewski AP, Statin-associated muscle adverse events: update for clinicians. Sultan Qaboos Univ Med J. 2016; 16(4): e406-e415. doi: 10.18295/squmj.2016.16.04.002
Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. European Heart Journal. 2015; 36(17): 1012-1022. doi: 10.1093/eurheartj/ehv043
Maxwell KN, Soccio RE, Duncan EM, Sehayek E, Breslow JL. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res. 2003; 44: 2109-2119. doi: 10,1194 / jlr.M300203-JLR200
Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, Prat A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004; 24(8): 1454-1459. doi: 10.1161/01.ATV.0000134621.14315.43
Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008; 49(2): 394-398. doi: 10.1194/jlr.M700437-JLR200
Koylan N, Mamedov MN. Opportunities of new lipid-lowering therapy: proprotein convertase subtilisin/kexin type 9 inhibitors’ clinical efficacy and safety profile. International Journal of Heart and Vascular Diseases. 2016; 4(11): 3-7. Russian (Koylan N., Мамедов М.Н. Перспективы новой тактики липидснижающей терапии: клиническая эффективность и профиль безопасности ингибиторов пропротеин/конвертазы субтилизин/кексина типа 9 //Междунар. журнал сердца и сосудистых заболеваний. 2016. Т. 4, № 11. С. 3-7)
Pavlova TV, Duplyakov DV, Vorontsova SA, Guseva GN. Prospects for managing patients with stable atherosclerosis. Cardiology: News, Opinions, Training. 2018; 6(2): 9-14. Russian (Павлова Т.В., Дупляков Д.В., Воронцова С.А., Гусева Г.Н. Перспективы ведения пациентов со стабильным течением атеросклероза //Кардиология: новости, мнения, обучение. 2018. Т. 6, № 2. С. 9-14)
Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Cardiology: News, Opinions, Training. 2019; 7(2): 45-57. Russian (Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 1 //Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 45-57)
Chaulin AM, Mazaev AYu, Aleksandrov AG. The role of proprotein convertase subtilisin/kexin of type 9 (pcsk-9) in cholesterol metabolism and new opportunities of lipid corrective therapy. International Research Journal. 2019; 4-1(82): 124-126. Russian (Чаулин А.М., Мазаев А.Ю., Александров А.Г. Роль пропротеин конвертазы субтилизин/кексин типа 9 (PCSK-9) в метаболизме холестерина и новые возможности липидкорригующей терапии //Междунар. науч.-исслед. журнал. 2019. № 4-1(82). С. 124-126)
Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, et al. Gene Inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012; 125(7): 894-901. doi: 10.1161/CIRCULATIONAHA.111.057406
Nishikido T, Ray KK. Non-antibody Approaches to Proprotein Convertase Subtilisin Kexin 9 Inhibition: siRNA, Antisense Oligonucleotides, Adnectins, Vaccination, and New Attempts at Small-Molecule Inhibitors Based on New Discoveries. Front Cardiovasc Med. 2019; 5: 199. doi: 10.3389/fcvm.2018.00199
Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem. 2006; 281(41): 30561-30572. doi: 10.1074/jbc.M606495200
Cameron J, Holla OL, Laerdahl JK, Kulseth MA, Berge KE, Leren TP. Mutation S462P in the PCSK9 gene reduces secretion of mutant PCSK9 without affecting the autocatalytic cleavage. Atherosclerosis. 2009; 203(1): 161-165. doi: 10.1016/j.atherosclerosis.2008.10.007
Strom TB, Tveten K, Leren TP. PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum. Biochem J. 2014; 457(1): 99-105. doi: 10.1042/BJ20130930
Chen XW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D. et al. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife. 2013; 2: e00444. doi: 10.7554/eLife.00444
Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschon H, et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014; 19(2): 310-318. doi: 10.1016/j.cmet.2013.12.006
Chen C, Li J, Matye DJ, Wang Y, Li T. Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced plasma cholesterol in Western diet-fed mice. J Lipid Res. 2019; 60(3): 539-549. doi: 10.1194/jlr.M089789
Gao A, Cayabyab FS, Chen X, Yang J, Wang L, Peng T, Lv Y. Implications of Sortilin in Lipid Metabolism and Lipid Disorder Diseases. DNA Cell Biol. 2017; 36(12): 1050-1061. doi: 10.1089/dna.2017.3853
Chaulin AM, Karslyan LS, Aleksandrov AG, Mazaev AYu, Grigorieva EV, Nurbaltaeva DA. The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Atherosclerosis Development. Bulletin of Science and Practice. 2019; 5(5): 112-120. Russian (Чаулин А.М., Карслян Л.С., Александров А.Г., Мазаев А.Ю., Григорьева Е.В., Нурбалтаева Д.А. Роль пропротеин конвертазы субтилизин/кексин типа 9 в развитии атеросклероза //Бюллетень науки и практики. 2019. Т. 5, № 5. С. 112-120)
Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. The Journal of Biological Chemistry. 2004; 279(48): 50630-50638. doi: 10.1074/jbc.M410077200
Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci USA. 2005; 102(6): 2069-2074. doi: 10.1073/pnas.0409736102
Roubtsova A, Munconda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011; 31(4): 785-791. doi: 10.1161/ATVBAHA.110.220988
Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res. 2015; 107(4): 556-567. doi: 10.1093/cvr/cvv178
Ding Z, Mizeracki AM, Hu C, Mehta JL. LOX-1 deletion and macrophage trafficking in atherosclerosis. Biochem Biophys Res Commun. 2013; 440(2): 210-214. doi: 10.1016/j.bbrc.2013.09.020
Lan H, Pang L, Smith MM, Levitan D, Ding W, Liu L, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J Cell Physiol. 2010; 224(1): 273-281. doi: 10.1002/jcp.22130
Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis. 2014; 234(2): 441-445. doi: 10.1016/j.atherosclerosis.2014.04.001
Walley KR, Francis GA, Opal SM, Stein EA, Russell JA, Boyd JH. The central role of Pcsk9 in septic pathogen lipid transport and clearance. Am J Respir Crit Care Med. 2015; 191(11): 1275-1286. doi: 10.1164 / rccm.201505-0876CI
Walley KR, Thain KR, Russell JA, Reilly MP, Meyer NJ, Ferguson JF, et al. Pcsk9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med. 2014; 6(258): 258ra143. doi: 10.1126 / scitranslmed.3008782
Walley KR. Role of lipoproteins and proprotein convertase subtilisin/kexin type 9 in endotoxin clearance in sepsis. Curr Opin Crit Care. 2016; 22(5): 464-469. doi: 10.1097/MCC.0000000000000351
Dwivedi DJ, Grin PM, Khan M, Prat A, Zhou J, Fox-Robichaud AE, et al. Differential Expression of PCSK9 Modulates Infection, Inflammation, and Coagulation in a Murine Model of Sepsis. Shock. 2016; 46(6): 672-680. doi: 10.1097/SHK.0000000000000682
Ueland T, Kleveland O, Michelsen AE, Wiseth R, Damas JK, Aukrust P, et al. Serum PCSK9 is modified by interleukin-6 receptor antagonism in patients with hypercholesterolaemia following non-ST-elevation myocardial infarction. Open Heart. 2018; 5(2): e000765. doi: 10.1136/openhrt-2017-000765
Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012; 220(2): 381-386. doi: 10.1016/j.atherosclerosis.2011.11.026
Gencer B, Montecucco F, Nanchen D, Carbone F, Klingenberg R, Vuilleumier N, et al. Prognostic value of PCSK9 levels in patients with acute coronary syndromes. Eur Heart J. 2016; 37(6): 546-553. doi: 10.1093/eurheartj/ehv637
Cheng JM, Oemrawsingh RM, Garcia-Garcia HM, Boersma E, van Geuns RJ, Serruys PW, et al. PCSK9 in relation to coronary plaque inflammation: Results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016; 248: 117-122. doi: 10.1016/j.atherosclerosis.2016.03.010
Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013; 128(7): 702-712. doi: 10.1161/CIRCULATIONAHA.113.002271
Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. Arterioscler Thromb Vasc Biol. 2017; 37(12): 2322-2332. doi: 10.1161/ATVBAHA.117.310042
Ding Z, Liu S, Wang X, Mathur P, Dai Y, Theus S, et al. Cross-talk between PCSK9 and damaged mtDNA in vascular smooth muscle cells: role in apoptosis. Antioxidants & Redox Signalling. 2016; 25(18): 997-1008. doi: 10,1089 / ars.2016.6631
Seidah NG, Awan Z, Chretien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014; 114(6): 1022-1036. doi: 10.1161/CIRCRESAHA.114.301621
Leander K, Malarstig A, Van’t Hooft FM, Hyde C, Hellenius ML, Troutt JS, et al. Circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors. Circulation. 2016; 133(13): 1230-1239. doi: 10.1161/CIRCULATIONAHA.115.018531
Almontashiri NA, Vilmundarson RO, Ghasemzadeh N, Dandona S, Roberts R, Quyyumi AA, et al. Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One. 2014; 9(9): e106294. doi: 10.1371/journal.pone.0106294
Cariou B, Guerin P, Le May C, Letocart V, Arnaud L, Guyomarch B, et al. Circulating PCSK9 levels in acute coronary syndrome: Results from the PC-SCA-9 prospective study. Diabetes Metab. 2017; 43(6): 529-535. doi: 10.1016/j.diabet.2017.07.009
Bae KH, Kim SW, Choi YK, Seo JB, Kim N, Kim CY, et al. Serum Levels of PCSK9 Are Associated with Coronary Angiographic Severity in Patients with Acute Coronary Syndrome. Diabetes Metab J. 2018; 42(3): 207-214. doi: 10.4093/dmj.2017.0081
Toth S, Fedacko J, Pekarova T, Hertelyova Z, Katz M, Mughees A, et al. Elevated Circulating PCSK9 Concentrations Predict Subclinical Atherosclerotic Changes in Low Risk Obese and Non-Obese Patients. Cardiol Ther. 2017; 6(2): 281-289. doi: 10.1007/s40119-017-0092-8
Статистика просмотров
Ссылки
- На текущий момент ссылки отсутствуют.