ОСНОВНЫЕ ВНУТРИКЛЕТОЧНЫЕ МЕХАНИЗМЫ ФОРМИРОВАНИЯ МОРФОЛОГИЧЕСКИХ ИЗМЕНЕНИЙ ВНУТРЕННИХ ОРГАНОВ ПРИ ФЛЮОРОЗЕ (ОБЗОР ЛИТЕРАТУРЫ)
Аннотация
Хроническая интоксикация соединениями фтора остается серьезной проблемой общественного здравоохранения несмотря на снижение их концентрации на производстве и общего уровня заболеваемости в последние годы. Длительное воздействие микроэлемента и его способность накапливаться в организме являются решающими факторами в морфогенезе структурных сдвигов. Поскольку основным проявлением флюороза является поражение зубов и скелета, исследователи традиционно сосредотачивают свое внимание на изучении преимущественно патологии данных тканей. В то же время, за последние годы накопился большой объем работ, посвященных действию фтора на нескелетные органы.
В данном обзоре представлен анализ текущих исследований морфологических аспектов воздействия фторидов на внутренние органы. Показано, что длительное воздействие и аккумуляция в организме соединений фтора приводят к системным внутриклеточным нарушениям: повышению уровня активных форм кислорода и азота, активации свободно-радикального окисления, модуляции путей внутриклеточной сигнализации и программируемой гибели клеток. Указанные патологические процессы опосредуют формирование морфологических изменений и функциональную несостоятельность как опорно-двигательного аппарата, так и нескелетных тканей, что требует комплексного подхода к лечению фтористой интоксикации и методам ее профилактики.
Ключевые слова
Литература
Zhao YY. The Progress about the influence of Fluorine on Bone. Med Recapitul. 2006; 12: 1092-1094
Shalina TI, Vasilyeva LS. General problems of toxic effect of fluorine. Siberian Medical Journal. 2009; 88(5): 5-9. Russian (Шалина Т.И., Васильева Л.С. Общие вопросы токсического действия фтора //Сибирский медицинский журнал. 2009. Т. 88, № 5. С. 5-9)
Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chem Biol Interact. 2010; 188(2): 319-333. doi: 10.1016/j.cbi.2010.07.011
Yanin EP. Fluorine in drinking water of the city of Saransk and its hygienic significance. Moscow: IMGRE, 1996. 58 p. Russian (Янин Е.П. Фтор в питьевых водах города Саранска и его гигиеническое значение. М.: ИМГРЭ, 1996. 58 c.)
Izmerov NF, Bukhtiyarov IV, Prokopenko LV, Kuzmina LP, Sorkina NS, Burmistrova TB, Lagutina GN. Contemporary aspects of maintenance and promotion of health of the workers employed at the aluminum production enterprises. Russian Journal of Occupational Health and Industrial Ecology. 2012; (11): 1-7. Russian (Измеров Н.Ф., Бухтияров И.В., Прокопенко Л.В., Кузьмина Л.П., Соркина Н.С., Бурмистрова Т.Б., Лагутина Г.Н. Современные аспекты сохранения и укрепления здоровья работников, занятых на предприятиях по производству алюминия //Медицина труда и промышленная экология. 2012. № 11. С. 1-7)
Qiao L, Liu X, He Y, Zhang J, Huang H, Bian W, et al. Progress of Signaling Pathways, Stress Pathways and Epigenetics in the Pathogenesis of Skeletal Fluorosis. Int J Mol Sci. 2021; 22(21): 11932. doi: 10.3390/ijms222111932
Cicek E, Aydin G, Akdogan M, Okutan H. Effects of chronic ingestion of sodium fluoride on myocardium in a second generation of rats. Hum Exp Toxicol. 2005; 24(2): 79-87. doi: 10.1191/0960327105ht505oa
Wei W, Pang S, Sun D. The pathogenesis of endemic fluorosis: Research progress in the last 5 years. J Cell Mol Med. 2019; 23(4): 2333-2342. doi: 10.1111/jcmm.14185
Boivin G, Chavassieux P, Chapuy MC, Baud CA, Meunier PJ. Skeletal fluorosis: histomorphometric findings. J Bone Miner Res. 1990; 5(S1): S185-S189. doi: 10.1002/jbmr.5650051382
Huo L, Liu K, Pei J, Yang Y, Ye Y, Liu Y, et al. Fluoride promotes viability and differentiation of osteoblast-like Saos-2 cells via BMP/Smads signaling pathway. Biol Trace Elem Res. 2013; 155(1): 142-149. doi: 10.1007/s12011-013-9770-0
Wang Y, Zhang X, Zhao Z, Xu H. Preliminary analysis of MicroRNAs expression profiling in MC3T3-E1 cells exposed to fluoride. Biol Trace Elem Res. 2017; 176(2): 367-373. doi: 10.1007/s12011-016-0833-x
Li XN, Lv P, Sun Z, Li GS, Xu H. Role of unfolded protein response in affecting osteoblast differentiation induced by fluoride. Biol Trace Elem Res. 2014; 158(1): 113-121. doi: 10.1007/s12011-014-9897-7
Yan X, Tian X, Wang L, Zhou W, Zhang W, Lv Y, et al. Fluoride induces apoptosis in MC3T3-E1 osteoblasts by altering ROS levels and mitochondrial membrane potentials. Fluoride. 2017; 50(2): 213-222
Wang Y, Duan XQ, Zhao ZT, Zhang XY, Wang H, Liu DW, et al. Fluoride affects calcium homeostasis by regulating parathyroid hormone, PTH-related peptide, and calcium-sensing receptor expression. Biol Trace Elem Res. 2015; 165(2): 159-166. doi: 10.1007/s12011-015-0245-3
Yu X, Yu H, Jiang N, Zhang X, Zhang M, Xu H. PTH (1-34) affects bone turnover governed by osteocytes exposed to fluoride. Toxicol Lett. 2018; 288: 25-34. doi: 10.1016/j.toxlet.2018.02.014
Zhukova AG, Mikhailova NN, Yadykina TK, Alekhina DA, Gorokhova LG, Romanenko DV, Bugaeva M.S. Experimental studies of intracellular liver protective mechanisms in development of chronic fluorine intoxication. Russian Journal of Occupational Health and Industrial Ecology. 2016; (5): 21-24. Russian (Жукова А.Г., Михайлова Н.Н., Ядыкина Т.К., Алехина Д.А., Горохова Л.Г., Романенко Д.В., Бугаева М.С. Экспериментальные исследования внутриклеточных защитных механизмов печени в развитии хронической фтористой интоксикации //Медицина труда и промышленная экология. 2016. № 5. С. 21-24)
Bugaeva MS, Bondarev OI, Gorokhova LG, Kizichenko NV, Zhdanova NN. Experimental study of the specificity of morphological changes development in internal organs with prolonged exposure to coal-rock dust and sodium fluoride to the body. Russian Journal of Occupational Health and Industrial Ecology. 2022; 62(5): 285-294. Russian (Бугаева М.С., Бондарев О.И., Горохова Л.Г., Кизиченко Н.В., Жданова Н.Н. Экспериментальное изучение специфичности развития морфологических изменений внутренних органов при длительном воздействии на организм угольно-породной пыли и фторида натрия //Медицина труда и промышленная экология. 2022. Т. 62, № 5. С. 285-294.) doi: 10.31089/1026-9428-2022-62-5-285-294
Yan L, Liu S, Wang C, Wang F, Song Y, Yan N, et al. JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediators Inflamm. 2013; 2013: 895975. doi: 10.1155/2013/895975
Lou DD, Guan ZZ, Liu YJ, Liu YF, Zhang KL, Pan JG, Pei JJ. The influence of chronic fluorosis on mitochondrial dynamics morphology and distribution in cortical neurons of the rat brain. Arch Toxicol. 2013; 87(3): 449-457. doi: 10.1007/s00204-012-0942-z
Xu Z, Xu B, Xia T, He W, Gao P, Guo L, et al. Relationship between intracellular Ca2+ and ROS during fluoride-induced injury in SH-SY5Y cells. Environ Toxicol. 2013; 28(6): 307-312. doi: 10.1002/tox.20721
Wei N, Dong YT, Deng J, Wang Y, Qi XL, Yu WF, et al. Changed expressions of N-methyl-d-aspartate receptors in the brains of rats and primary neurons exposed to high level of fluoride. J Trace Elem Med Biol. 2018; 45: 31-40. doi: 10.1016/j.jtemb.2017.09.020
Agalakova NI, Nadei OV. Inorganic fluoride and functions of brain. Crit Rev Toxicol. 2020; 50(1): 28-46. doi: 10.1080/10408444.2020.1722061
Grandjean P. Developmental fluoride neurotoxicity: an updated review. Environ Health. 2019; 18(1): 110. doi: 10.1186/s12940-019-0551-x
Kurdi MS. Chronic fluorosis: The disease and its anaesthetic implications. Indian J Anaesth. 2016; 60(3): 157-162. doi: 10.4103/0019-5049.177867
Reddy YP, Tiwari S, Tomar LK, Desai N, Sharma VK. Fluoride-Induced Expression of Neuroinflammatory Markers and Neurophysiological Regulation in the Brain of Wistar Rat Model. Biol Trace Elem Res. 2021; 199(7): 2621-2626. doi: 10.1007/s12011-020-02362-x
Abdelaleem MM, El-Tahawy NFG, Abozaid SMM, Abdel-Hakim SA. Possible protective effect of curcumin on the thyroid gland changes induced by sodium fluoride in albino rats: Light and electron microscopic study. Endocr Regul. 2018; 52(2): 59-68. doi: 10.2478/enr-2018-0007
Liu HL, Zeng Q, Cui YS, Zhang L, Fu G, Hou CC, et al. Fluoride-induced thyroid cell apoptosis. Fluoride. 2014; 47(2): 161-169
Jiang Y, Guo X, Sun Q, Shan Z, Teng W. Effects of excess fluoride and iodide on thyroid function and morphology. Biol Trace Elem Res. 2016; 170(2): 382-389. doi: 10.1007/s12011-015-0479-0
Yadykina TK, Bugaeva MS, Kochergina TV, Mikhailova NN. Clinical and experimental studies of the effect of chronic fluoride intoxication on the hormonal status of the body and morphological changes in the thyroid gland. Russian Journal of Occupational Health and Industrial Ecology. 2021; 61(3): 173-180. Russian (Ядыкина Т.К., Бугаева М.С., Кочергина Т.В., Михайлова Н.Н. Клинико-экспериментальные исследования влияния хронической фтористой интоксикации на гормональный статус организма и морфологические изменения щитовидной железы //Медицина труда и промышленная экология. 2021. Т. 61, № 3. С. 173-180.) doi: 10.31089/1026-9428-2021-61-3-173-180
Hassan NH, Amin MA. Resveratrol thyro-protective role in fluorosis rat model (histo-morphometric, biochemical and ultrastructural study). Tissue Cell. 2023; 80: 101986. doi: 10.1016/j.tice.2022.101986
Skórka-Majewicz M, Goschorska M, Żwierełło W, Baranowska-Bosiacka I, Styburski D, Kapczuk P, Gutowska I. Effect of fluoride on endocrine tissues and their secretory functions – review. Chemosphere. 2020; 260: 127565. doi: 10.1016/j.chemosphere.2020.127565
Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM, Almasan A. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Diff. 2003; 10(3): 323-334. doi: 10.1038/sj.cdd.4401148
Panneerselvam L, Govindarajan V, Ameeramja J, Nair HR, Perumal E. Single oral acute fluoride exposure causes changes in cardiac expression of oxidant and antioxidant enzymes, apoptotic and necrotic markers in male rats. Biochimie. 2015; 119: 27-35. doi: 10.1016/j.biochi.2015.10.002
Gutowska I, Baranowska-Bosiacha I, Baśkiewicz M, Milo B, Siennicka A, Marchiewicz M, et al. Fluoride as a pro-inflammatory factor and inhibitor of ATP bioavailability in differentiated human THP1 monocytic cells. Toxicol Lett. 2010; 196(2): 74-79. doi: 10.1016/j.toxlet.2010.03.1167
Flora SJ, Pachauri V, Mittal M, Kumar D. Interactive effect of arsenic and fluoride on cardio-respiratory disorders in male rats: possible role of reactive oxygen species. Biometals. 2011; 24(4): 615-628. doi: 10.1007/s10534-011-9412-y
Ma Y, Niu R, Sun Z, Wang J, Luo G, Zhang J, Wang J. Inflammatory responses induced by fluoride and arsenic at toxic concentration in rabbit aorta. Arch Toxicol. 2012; 86(6): 849-856. doi: 10.1007/s00204-012-0803-9
Namiki M, Kawashima S, Yamashita T, Ozaki M, Hirase T, Ishida T, et al. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2002; 22(1): 115-120. doi: 10.1161/hq0102.102278
Afolabi OK, Oyewo EB, Adekunle AS, Adedosu OT, Adedeji AL. Oxidative indices correlate with dyslipidemia and pro-inflammatory cytokine levels in fluoride-exposed rats. Arh Hig Rada Toksikol. 2013; 64(4): 521-529. doi: 10.2478/10004-1254-64-2013-2351
Ji F, Xu H, Zhang YX, Zhang J., Liu W.Y., Shao H., et al. Study on the cardiovascular system damage in skeletal fluorosis patients. Chin J Ctrl Endem Dis. 2004; 19(6): 321-326
Liao W, Guan ZZ, Liu YF, Xu SQ, Wu CX, Li Y. Observations on electrocardiograms in a population living in a region with coal-burning-borne endemic fluorosis after comprehensive controls. Chinese Journal of Endemiology. 2013; 32(4): 424-426
Basha MP, Sujitha NS. Chronic fluoride toxicity and myocardial damage: antioxidant offered protection in second generation rats. Toxicol Int. 2011; 18(2): 99-104. doi: 10.4103/0971-6580.84260
Viragh E, Viragh H, Laczka J, Coldea V. Health effects of occupational exposure to fluorine and its compounds in a small-scale enterprise. Ind Health. 2006; 44(1): 64-68. doi: 10.2486/indhealth.44.64
Thrane EV, Refsnes M, Thoresen GH, Låg M, Schwarze PE. Fluoride-induced apoptosis in epithelial lung cells involves activation of MAP kinases p38 and possibly JNK. Toxicol Sci. 2001; 61(1): 83-91. doi: 10.1093/toxsci/61.1.83
Perera T, Ranasinghe S, Alles N, Waduge R. Effect of fluoride on major organs with the different time of exposure in rats. Environ Health Prev Med. 2018; 23(1): 17. doi: 10.1186/s12199-018-0707-2
Song GH, Huang FB, Gao JP, Liu ML, Pang WB, Li Wb, et al. Effects of fluoride on DNA damage and caspase-mediated apoptosis in the liver of rats. Biol Trace Elem Res. 2015; 166(2): 173-182. doi: 10.1007/s12011-015-0265-z
Pandiyan T, Prabu M. Ameliorative effect of epigallocatechin gallate on sodium fluoride induced oxidative stress mediated metabolism in rat. International Journal of Pharmacology and Toxicology. 2014; 2(2): 76-85. doi: 10.14419/ijpt.v2i2.3010
Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y, et al. Histopathological findings of renal tissue induced by oxidative stress due to different concentrations of fluoride. Oncotarget. 2017; 8(31): 50430-50446. doi: 10.18632/oncotarget.17365
Omóbòwálé TO, Oyagbemi AA, Alaba BA, Ola-Davies OE, Adejumobi OA, Asenuga ER, et al. Ameliorative effect of Azadirachta indica on sodium fluoride-induced hypertension through improvement of antioxidant defence system and upregulation of extracellular signal regulated kinase 1/2 signaling. J Basic Clin Physiol Pharmacol. 2018; 29(2): 155-164. doi: 10.1515/jbcpp-2017-0029
Wei Q, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. A mini review of fluoride-induced apoptotic pathways. Environ Sci Pollut Res Int. 2018; 25(34): 33926-33935. doi: 10.1007/s11356-018-3406-z
Zhang Z, Zhou B, Wang H, Wang F, Song Y, Liu S, Xi S. Maize purple plant pigment protects against fluoride-induced oxidative damage of liver and kidney in rats. Int J Environ Res Public Health. 2014; 11(1): 1020-1033. doi: 10.3390/ijerph110101020
Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S. Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol. 2011; 85(4): 327-335. doi: 10.1007/s00204-010-0588-7
Kim J, Kwon WS, Rahman MS, Lee JS, Yoon SJ, Park YJ, et al. Effect of sodium fluoride on male mouse fertility. Andrology. 2015; 3(3): 544-551. doi: 10.1111/andr.12006
Tian Y, Xiao Y, Wang B, Sun C, Tang K, Sun F. Vitamin E and lycopene reduce coal burning fluorosis-induced spermatogenic cell apoptosis via oxidative stress-mediated JNK and ERK signaling pathways. Biosci Rep. 2017; 38(4): BSR20171003. doi: 10.1042/BSR20171003
Kumar N, Sood S, Arora B, Singh M, Beena. Effect of duration of fluoride exposure on the reproductive system in male rabbits. J Hum Reprod Sci. 2010; 3(3): 148-152. doi: 10.4103/0974-1208.74159
Zhao MX, Zhou GY, Zhu JY, Gong B, Hou JX, Zhou T, et al. Fluoride exposure, follicle stimulating hormone receptor gene polymorphism and hypothalamus-pituitary-ovarian axis hormones in Chinese women. Biomed Environ Sci. 2015; 28(9): 696-700. doi: 10.3967/bes2015.099
Wang HW, Zhao WP, Tan PP, Liu J, Zhao J, Zhou BH. The MMP-9/TIMP-1 system is involved in fluoride-induced reproductive dysfunctions in female mice. Biol Trace Elem Res. 2017; 178(2): 253-260. doi: 10.1007/s12011-016-0929-3
Yin S, Song C, Wu H, Chen X, Zhang Y. Adverse effects of high concentrations of fluoride on characteristics of the ovary and mature oocyte of mouse. PLoS ONE. 2015; 10(6): e0129594. doi: 10.1371/journal.pone.0129594
Статистика просмотров
Ссылки
- На текущий момент ссылки отсутствуют.