АСПЕКТЫ ВИЛОЧКОВОЙ ЖЕЛЕЗЫ (ТИМУСА) ДЕТСКОГО ВОЗРАСТА (ЧАСТЬ VI). АСПЕКТЫ ЛЕЧЕНИЯ И ПРОФИЛАКТИКИ «ТИМУСОПОСРЕДОВАННЫХ» ПАТОЛОГИЧЕСКИХ СОСТОЯНИЙ


Ровда Ю.И., Миняйлова Н.Н., Ведерникова А.В., Халивопуло И.К., Шабалдин А.В., Лобыкина А.А., Шмакова О.В., Зинчук С.Ф., Черных Н.С., Сохарев В.В., Юнкина Я.В.

Аннотация


Исследования препаратов, влияющих на Т-клеточное звено иммунитета, начавшиеся в середине 20 века, продолжаются, не теряя актуальности и сейчас. В медицинском сообществе предпринималось множество попыток создания лекарств из экстрактов из тимуса, имеющих пептидную основу. Часть из которых – «тималин», «тимозин», «тактивин», используется и в настоящее время, правда, с более узким спектром показаний. Ушла в прошлое эпоха использования этих препаратов, например, при иммунодепрессии кроветворения, при первичных иммунодефицитных состояниях, при лечении острой септической и гнойно-воспалительной патологии, у часто и длительно болеющих детей (с сочетанной тимомегалией) и т.д.
Этому способствовало развитие новых диагностических технологий, доказывающих многокомпонентность регуляторных структур системы иммунитета, которые нельзя полностью втиснуть в прокрустово ложе действия только тимических пептидов. Но в последние годы получены позитивные результаты использования этих препаратов у пациентов с COVID-19 и с синдромом приобретенного иммунодефицита (СПИД), а также при лечении лимфоцитопении у ребенка грудного возраста.
Помимо пептидов тимуса, предлагается применение соматотропного гормона (СТГ), действующего как стимулятор стромальных клеток вилочковой железы. В разных странах мира ведутся исследования, направленные на предотвращение инволюции тимуса, рассматриваются способы восстановления вилочковой железы: от применения корейского красного женьшеня до трансплантации клеток-предшественников. Помимо этого, ведется активная работа в попытке создания искусственного тимуса на базе клеток вилочковой железы, включенных в нановолокна.
В настоящее время выделены сотни видов первичных иммунодефицитов (ПИД), усовершенствованы и открыты новые методы и маркеры диагностики, что позволило переоценить роль тимомегалии и микротимуса в происхождении иммунодефицита у детей, хотя факты повышенной заболеваемости (чаще вирусной этиологии) у детей раннего возраста, имеющих данные биполярные состояния тимуса, трудно оспорить, тем более, когда последующий многолетний катамнез этих детей серьезно не подвергался научному анализу.
И, если принимать во внимание положение о том, что клиническое проявление первичного иммунодефицитного состояния возможно в любом возрасте, то наличие критичной тимомегалии или микротимуса (даже преходящей) в раннем возрасте могут быть «первыми ласточками» этого синдрома, который клинически проявится намного позднее, тогда, когда к этому добавятся и процессы возрастной инволюции ВЖ. В любом случае данная категория детей требует дальнейшего изучения и пристального внимания ученых с целью разработки современных методов диагностики и лечения.


Ключевые слова


тимус; дети; инволюция тимуса; иммунодефицит; тактивин; пептиды тимуса; тимомегалия

Полный текст:

Full Text HTML Full Text PDF

Литература


Tishevskaya NV, Gevorkyan NM, Kozlova NI. The role of T-lymphocytes in hormonal regulation of morphogenetic processes. Advances in modern biology. 2015; 135(2): 189-202. Russian (Тишевская Н.В., Геворкян Н.М., Козлова Н.И. Роль T-лимфоцитов в гормональной регуляции морфогенетических процессов //Успехи современной биологии. 2015. Т. 135, № 2. С. 189-202)

Clinical pharmacology of thymogen /ed. VS Smirnov, SPb., 2004. 104 p. Russian (Клиническая фармакология тимогена /под ред. В.С. Смирнова. СПб., 2004. 104 с.)

Arion VYa, Zimina IV, Moskvina SN, Bystrova OV. T-activin is a natural immunocorrector. Clinical application. Immunopathology, allergology, infectology. 2007; 4: 11-26. Russian (Арион В.Я., Зимина И.В., Москвина С.Н., Быстрова О.В. Т-активин – природный иммунокорректор. Клиническое применение //Иммунопатология, аллергология, инфектология. 2007. № 4. С. 11-26)

Arion VYa, Ivanushkin EF. Principles of immunocorrective therapy with thymus preparation T-activin: A.s. 1673122 SSSR, MKI 5A61K35/26; Krasnoyarsk med. in-t. No. 4452382/12; Appl. 05/31/88; Published 30.98.91, Bull. No. 32. Russian (Арион В.Я., Иванушкин Е.Ф. Принципы иммунокоррегирующей терапии препаратом тимуса Т-активин: А.с. 1673122 СССР, МКИ 5А61К35/26; Красноярский мед. ин-т. № 4452382/12; Заявл. 31.05.88; Опубл. 30.98.91, Бюл. № 32)

Vaganov PD, Martynova MI, Arion VYa. Clinical and immunological characteristics of children with enlarged thymus syndrome and their correction. Russian Bulletin of Perinatology and Pediatrics. 2001; 46(3): 59-60. Russian (Ваганов П.Д., Мартынова М.И., Арион В.Я. Клинико-иммунологическая характеристика детей с синдромом увеличенной вилочковой железы и их коррекция //Российский вестник перинатологии и педиатрии. 2001. Т. 46, № 3. С. 59-60)

Arion VIa, Karaulov AV, Khromenkov IuI, Sanina IV, Tagirova AK. Change in immunological and biochemical parameters in germ-free animals in response to T-activin. Bulletin of experimental biology and medicine. 1987; 104(9): 332-334. Russian (Арион В.Я., Караулов Ю.В., Хроменков Ю.И., Санина И.В., Тагирова А.К. Изменения некоторых иммунологических и биохимических параметров Т-активина у безмикробных животных //Бюллетень экспериментальной биологии и медицины. 1987. Т. 104, № 9. C. 332-334)

Kuzmenko LG. Conceptual view on the genesis of congenital thymomegaly. Pediatria n.a. G.N. Speransky. 2012; 3: 38-43. Russian (Кузьменко Л.Г. Концептуальный взгляд на генез врожденной тимомегалии //Педиатрия. 2012. № 3. С. 38-43)

Lastovka I.N., Matveev V.A. Features of the course of acute respiratory viral infections in young children with enlarged thymus syndrome. Topical issues of infectious pathology and vaccination: Proceedings of the IX Congress of children's infectious disease specialists in Russia. 2010. S. 54-55. Russian (Ластовка И.Н., Матвеев В.А. Особенности течения острых респираторных вирусных инфекций у детей раннего возраста с синдромом увеличенной вилочковой железы //Актуальные вопросы инфекционной патологии и вакцинопрофилактики: Материалы IX конгресса детских инфекционистов России. 2010. С. 54-55)

Kuzmenko LG, Kiseleva NM. Contemporary opinion on the role of thymus in living organisms and its participation in the vaccinal process in children of young age. Clinical pathophysiology. 2016; 22(3): 104-114. Russian (Кузьменко Л.Г., Киселева Н.М. Современный взгляд на роль тимуса в живом организме и его участие в вакцинальном процессе у детей раннего возраста //Клиническая патофизиология. 2016. Т. 22, № 3. С. 104-114)

Diagtyareva EA, Kuzmenko LG, Tyurin NA. Immunotropic drugs in pediatric cardiology. Journal of Arrhythmology. 2000; 18: 20-21. Russian (Дягтярева Е.А., Кузьменко Л.Г., Тюрин Н.А. Иммунотропные средства в детской кардиологии //Вестник аритмологии. 2000. № 18. С.20-21)

Matkovskaya TV. To the pathogenesis of thymomegaly in children. Problems of endocrinology. 1988; 2: 34-38. Russian (Матковская Т.В. К патогенезу тимомегалии у детей //Проблемы эндокринологии. 1988. № 2. С. 34-38)

Vaganov PD, Martynov MI, Mikheeva IG, Vaganova LP, Romanova LF, Kuznetsova LF. Hormonal disorders in children with thymus enlargement syndrome and their possible correction. Russian Bulletin of Perinatology and Pediatrics. 2000; 45(4): 32. Russian (Ваганов П.Д., Мартынов М.И., Михеева И.Г., Ваганова Л.П., Романова Л.Ф., Кузнецова Л.Ф. Гормональные нарушения у детей с синдромом увеличения вилочковой железы и возможная их коррекция //Российский вестник перинатологии и педиатрии. 2000. Т. 45, № 4. С. 32)

Heavy AV. Thymomegaly in children (clinical and immunological characteristics and therapeutic and preventive measures): abstr. dis. … dr. med. sci. Kyiv, 1986. 43 p. Russian (Тяжкая А.В. Тимомегалия у детей (клинико-иммунологическая характеристика и лечебно-профилактические мероприятия): автореф. дис. ... д-ра мед. наук. Киев, 1986. 43 с.)

Ivanovskaya TE, Katasonova LP. Thymus structure, immune status and pathological process. Arkhive Pathologii. 1986; 48(1): 9. Russian (Ивановская Т.Е., Катасонова Л.П. Структура тимуса, иммунный статус и патологический процесс //Архив патологии. 1986. Т. 48, № 1. C. 9)

Pishchalnikov AYu. Thymomegaly syndrome in young children as a marker of a slow immune start: abstr. dis. … cand. med. sci. Chelyabinsk, 1992. 21 p. Russian (Пищальников А.Ю. Синдром тимомегалии у детей раннего возраста как маркер медленного иммунного старта: автореф. дис. … канд. мед. наук. Челябинск, 1992. 21 с.)

Kuzmenko LG, Andzhel AE, Neizhko LY. Case of successful correction of severe lymphocytopenia by polypeptides of thymus in an infant. Pediatria n.a. G.N. Speransky. 2017; 96(5): 201-205. Russian (Кузьменко Л.Г., Анджель А.Е., НеижкоЛ.Ю. Случай успешной коррекции полипептидами тимуса тяжелой лимфоцитопении у ребенка грудного возраста //Педиатрия. Журнал им. Г.Н. Сперанского. 2017. Т. 96, № 5. С. 201-205)

Vaganov PD, Donetskova AD, Nikonova MF, Yanovskaya EYu, Petryaikina EE, Pugacheva IA, et al. The effect of tactivin therapy on T-lymphopoiesis under thymomegalia in children of early age with acute obstructive bronchitis. Medical Journal of the Russian Federation. 2015; 21(4): 18-20. Russian (Ваганов П.Д., Донецкова А.Д., Никонова М.Ф., Яновская Э.Ю., Петряйкина Е.Е., Пугачева И.А., и др. Влияние терапии тактивином на Т-лимфопоэз при тимомегалии у детей раннего возраста с острым обструктивным бронхитом //Российский медицинский журнал. 2015. Т. 21, № 4. С. 18-20)

Petrov RV. Synthetic immunomodulators. M.: Nauka, 1991. 197 p. Russian (Петров Р.В. Синтетические иммуномодуляторы. М.: Наука, 1991. 197 с.)

Kuzmenko LG, Smyslova ZV, Kiseleva NM, Bystrova OV, Agarval RK. To the question of the thymus, associated terminology, and health status of childrens with a large thymus. Journal of scientific articles health and education in the XXI century. 2015; 17(4): 97-107. Russian (Кузьменко Л.Г., Смыслова З.В., Киселева Н.М., Быстрова О.В., Агарвал Р.К. К вопросу о тимусе, связанной с ним терминологии и состоянии здоровья детей с большим тимусом //Журнал научных статей здоровье и образование в XXI веке. 2015. Т. 17, № 4. С. 97-107)

Kuzmenko LG, Neizhko LYu, Smyislova ZV, Byistrova OV, Esmurzieva ZI, Vahrusheva SI, et al. Pediatria n.a. G.N. Speransky. 2014; 93(3). Russian (Кузьменко Л.Г., Неижко Л.Ю., Смыслова З.В., Быстрова О.В., Эсмурзиева З.И., Вахрушева С.И., и др. Оценка массы тимуса у детей раннего возраста по данным ультразвукового сканирования //Педиатрия им. Г.Н. Сперанского. 2014. Т. 93, № 3)

Protocol for clinical approbation of the method «Using modern methods and technologies to detect complications and evaluate the effectiveness of personalized rehabilitation of children with primary immunodeficiencies» /Dmitry Rogachev Ministry of Health of Russia. 2019. 37 p. Russian (Протокол клинической апробации метода «Использование современных методов и технологий для выявления осложнений и оценка эффективности персонализированной реабилитации детей с первичными иммунодефицитами /ФГБУ «НМИЦ ДГОИ им. Дмитрия Рогачева Минздава России. 2019. 37 с.)

Rumyantsev AG. Prospects for the development of clinical immunology. Pediatric Hematology/Oncology and Immunopathology. 2020; 19(S4): 14-17. Russian (Румянцев А.Г. Перспективы развития клинической иммунологии //Вопросы гематологии/онкологии иммунопатологии в педиатрии. 2020. Т. 19, № S4. С. 14-17)

Shcherbina AYu. Immunodeficiency states in real clinical practice (Lecture). Russian (Щербина А.Ю. Иммунодефицитные состояния в реальной клинической практике (Лекция).) https://www.youtube.com/watch?v=8Zw4zwGE07I)

Schaad UB. OM-85 BV, an immunostimulant in pediatric recurrent respiratory tract infections: a systematic review. World J Pediatr. 2010; 6(1): 5-12. DOI: 10.1007/s12519- 010-0001-x

Acute respiratory viral infection in children (ARVI): clinical guidelines. M., 2018. 33 p. Russian (Острая респираторная вирусная инфекция у детей (ОРВИ): клинические рекомендации. М., 2018. 33 с.)

A.A. Baranov (red.). Rukovodstvo po ambulatorno-klinicheskoy pediatrii. M. Geotar-Media. 2-ye izd. 2009. Russian (А.А. Баранов (ред.). Руководство по амбулаторно-клинической педиатрии. М. Гэотар-Медиа. 2-еизд. 2009) (in Russian)

Danzi GB, Loffi M, Galeazzi G, Gherbesi E. A cute pulmonary embolism and COVID-19 pneumonia: a random association. Eur Heart J. 2020; 41: 1858

Tolstova EM, Zaitseva OV. Thymus physiology and pathology in childhood. Pediatria n.a. G.N. Speransky. 2018; 97(6): 166-172. Russian (Толстова Е.М., Зайцева О.В. Физиология и патология тимуса в детском возрасте //Педиатрия им. Г.Н. Сперанского. 2018. Т. 97, № 6. С. 166-172)

Liu Yu, Pan Yu, Hu Z, Wu M, Wang C, Feng Z, et al. Thymosin Alpha 1 Reduces the Mortality of Severe Coronavirus Disease 2019 by Restoration of Lymphocytopenia and Reversion of Exhausted T Cells. Clin Infect Dis. 2020; 71(16): 2150-2157. DOI: 10.1093/cid/ciaa630

Khavinson VK, Kuznik BI, Trofimova SV, Volchkov VA, Rukavishnikova SA, Titova ON, et al. Results and Prospects of Using Activator of Hematopoietic Stem Cell Differentiation in Complex Therapy for Patients with COVID-19. Stem Cell Rev Rep. 2021; 17: 285-290 (). DOI: 10.1007/s12015-020-10087-6

Liu X, Liu Y, Wang L, Hu L, Liu D, Li J. Analysis of the prophylactic effect of thymosin drugs on COVID-19 for 435 medical staff: A hospital-based retrospective study. J Med Virol. 2021; 93(3): 1573-1580. DOI: 10.1002/jmv.26492

Wang W, Thomas R, Oh J, Su DM. Thymic Aging May Be Associated with COVID-19 Pathophysiology in the Elderly. Cells. 2021; 10(3): 628. DOI: 10.3390/cells10030628

Matteucci C, Grelli S, Balestrieri E, et al. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol. 2017; 12(2): 141-155

Henson SM, Snelgrove R, Hussell T, Wells DJ, Aspinall R. An IL-7 Fusion Protein That Shows Increased Thymopoietic Ability. J Immunol. 2005; 175: 4112-4118

Laterre PF, François B, Collienne C, Hantson P, Jeannet R, Remy KE, Hotchkiss RS. Association of Interleukin 7 Immunotherapy with Lymphocyte Counts Among Patients with Severe Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. 2020; 3: e2016485

Monneret G, De Marignan D, Coudereau R, Bernet C, Ader F, Frobert E, et al. Immune monitoring of interleukin-7 compassionate use in a critically ill COVID-19 patient. Cell Mol Immunol. 2020; 17: 1001-1003

Lages CS, Lewkowich I, Sproles A, Wills-Karp M, Chougnet C. Partial restoration of T-cell function in aged mice by in vitro blockade of the PD-1/ PD-L1 pathway. Aging Cell. 2010; 9: 785-798

Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, et al. mTOR regulates memory CD8 T-cell differentiation. Nat Cell Biol. 2009; 460: 108-112

Mannick JB, Morris M, Hockey H-UP, Roma G, Beibel M, Kulmatycki K, et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med. 2018; 10: eaaq1564

Kennedy RB, Ovsyannikova IG, Haralambieva IH, Oberg AL, Zimmermann MT, Grill DE, Poland GA. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Front Immunol. 2016; 7: 450

Maciolek J, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol. 2014; 27: 60-74

Elahi A, Sabui S, Narasappa NN, Agrawal S, Lambrecht NW, Agrawal A, Said HM. Biotin Deficiency Induces Th1- and Th17-Mediated Proinflammatory Responses in Human CD4+ T Lymphocytes via Activation of the mTOR Signaling Pathway. J Immunol. 2018; 200: 2563-2570

Zhang F, Liu G, Li D, Wei C, Hao J. DDIT4 and Associated lncDDIT4 Modulate Th17 Differentiation through the DDIT4/TSC/mTOR Pathway. J Immunol. 2018; 200: 1618-1626

Tang L, Yin Z, Hu Y, Mei H. Controlling Cytokine Storm Is Vital in COVID-19. Front Immunol. 2020; 11: 570993

Kempuraj D, Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Khan A, et al. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist. 2020; 26: 402-414

Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. High TNF-α levels in resting B cells negatively correlate with their response. Exp Gerontol. 2014; 54: 116-122

Khan SI, Shihata WA, Andrews KL, Lee MKS, Moore X-L, Jefferis A-M, et al. Effects of high- and low-dose aspirin on adaptive immunity and hypertension in the stroke-prone spontaneously hypertensive rat. FASEB J. 2018; 33: 1510-1521

Alexia C, Cren M, Louis-Plence P, et al. Polyoxidonium® activates cytotoxic lymphocyte responses through dendritic cell maturation: Clinical effects in breast cancer. Front Immunol. 2019; 10: 2693. DOI: 10.3389/fimmu.2019. 02693

Talayev VYu, Matveichev AV, Zaichenko IYe, et al. Vaktsinnyy ad"yuvant Polioksidoniy® usilivayet immunnyy otvet na nizkuyu dozu antigenov grippa. Nauchnoye obespecheniye protivoepidemicheskoy zashchity naseleniya: aktual'nyye problem i resheniya: collection of scientific papers. N. Novgorod: Remedium Privolzh'ye, 2019. P. 363-365. Russian (Талаев В.Ю., Матвеичев А.В., Заиченко И.Е. и др. Вакцинный адъювант Полиоксидоний® усиливает иммунный ответ на низкую дозу антигенов гриппа //Научное обеспечение противоэпидемической защиты населения: актуальные проблемы и решения: сб. науч. трудов. Н. Новгород: Ремедиум Приволжье, 2019. С. 363-365)

Kostinov MP, Markelova EV, Svitich OA, Polishchuk VB. Immune mechanisms of SARS-COV-2 and potential drugs in the prevention and treatment of COVID-19. Pulmonologiya. 2020; 5: 700-708. Russian (Костинов М.П., Маркелова Е.В., Свитич О.А., Полищук В.Б. Иммунные механизмы SARS-CoV-2 и потенциальные препараты для профилактики и лечения COVID-19 //Пульмонология. 2020. № 5. С. 700-708)

Shin KK, Yi Y-S, Kim JK, Kim H, Hossain MA, Kim J-H, Cho JY. Korean red ginseng plays an anti-aging role by modulating expression of aging-related genes and immune cell subsets. Molecules. 2020; 25(7): 1492. DOI: 10.3390/molecules25071492

Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. Allergy Clin Immunol. 2020; 145(2): 679-697.e5. DOI: 10.1016/j.jaci.2019.08.029

Shichkin VP, Antica M. Thymus Regeneration and Future Challenges. Stem Cell Revand Rep. 2020; 16(2): 239-250. DOI: 10.1007/s12015-020-09955-y

Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, et al. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos. Immunity. 2019; 51(5): 930-948. DOI: 10.1016/j.immuni.2019.09.008

Abusarah J, Khodayarian F, Cui Y, El-Kadiry AE-H, Rafei M. Thymic Rejuvenation: Are We There Yet? From the ed. volume Gerontology /Ed. by D’Onofrio G, Greco A, Sancarlo D. 2018. DOI: 10.5772/intechopen.74048

Hora J. Češivy robili prvníumělý brzlík, pacient ůmpo operacimů žeposílitimunitu. iDNES. 2018, 3 května

Cowan JE, Takahama Y, Bhandoola A, Ohigashi I. Postnatal Involution and Counter-Involution of the Thymus. Front Immunol. 2020; 11: 897. DOI: 10.3389/fimmu.2020.00897

Sikandar А. Shahzaib and Naeem Ullah. Microarchitecture of the Thymus Gland; Its Age and Disease-Associated Morphological Alterations, and Possible Means to Prolong Its Physiological Activity. January 2020. DOI: 10.5772/intechopen.88480

Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp. 2017; 65(5): 401-420. DOI: 10.1007/s00005-017-0462-x


Статистика просмотров

Загрузка метрик ...

Ссылки

  • На текущий момент ссылки отсутствуют.