СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ПАТОФИЗИОЛОГИИ АТЕРОСКЛЕРОЗА. ЧАСТЬ 1. РОЛЬ НАРУШЕНИЯ ОБМЕНА ЛИПИДОВ И ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ (ОБЗОР ЛИТЕРАТУРЫ)


Чаулин А.М., Григорьева Ю.В., Дупляков Д.В.

Аннотация


По современным представлениям атеросклероз является хроническим воспалительным заболеванием сосудистой стенки, которое характеризуется накоплением (аккумуляцией) липидов, пролиферацией гладкомышечных клеток сосудов, апоптозом, некрозом клеток, фиброзом и локальным воспалением. В патофизиологии атеросклероза принимают участие многочисленные механизмы, среди которых ключевую роль играют нарушение метаболизма липидов и модификация липопротеинов низкой плотности, эндотелиальная дисфункция, иммунные и воспалительные процессы. Между данными механизмами существуют сложные и многокомпонентные взаимодействия, которые мы обсуждаем в данном обзоре.

В первой части обзора мы рассматриваем роль нарушения метаболизма липидов и эндотелиальной дисфункции в развитии атеросклероза.

Во второй части обзора будет рассмотрена роль иммунных и воспалительных механизмов в патогенезе атеросклероза.


Ключевые слова


обзор литературы; атеросклероз; обмен липидов; липопротеины низкой плотности (ЛПНП); окислительный стресс; эндотелий; дисфункция эндотелия; оксид азота (NO); эндотелин-1 (ET-1)

Полный текст:

Full Text HTML Full Text PDF

Литература


Falk E. Pathogenesis of Atherosclerosis. J Am Coll Cardiol. 2006; 47: C7-C12. doi: 10.1016/j.jacc.2005.09.068

Chaulin AM, Karslyan LS, Bazyuk EV, Nurbaltaeva DA, Duplyakov DV. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiology. 2019; 59(11): 66-75. Russian (Чаулин А.М., Карслян Л.С., Григорьева Е.В., Нурбалтаева Д.А., Дупляков Д.В. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека //Кардиология. 2019. Т. 59, № 11. C. 66-75). DOI:10.18087/cardio.2019.11.n414

Kislyak OA, Malysheva NV, Chirkova NN. Risk factors for cardiovascular diseases in the development of diseases associated with atherosclerosis. Clinical Gerontology. 2008; 14(3): 3-11. Russian (Кисляк О.А., Малышева Н.В., Чиркова Н.Н. Факторы риска сердечно-сосудистых заболеваний в развитии болезней, связанных с атеросклерозом //Клиническая геронтология. 2008. Т. 14, № 3. С. 3-11.) https://www.elibrary.ru/item.asp?id=11031206

Singh BR, Mengi SA, Xu YJ, Arneja AS, Dhalla NS. Pathogenesis of Atherosclerosis: A Multifactorial Process. Exp Clin Cardiol. 2002; 7: 40-53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716189/

Albertini R, Moratti R, de Luca G. Oxidation of Low-Density Lipoprotein in Atherosclerosis from Basic Biochemistry to Clinical Studies. Curr Mol Med. 2002; 2: 579-592. doi: 10.2174/1566524023362177

Nguyen P, Leray V, Diez M, Serisier S, le Bloc’h J, Siliart B, Dumon H. Liver Lipid Metabolism. J Anim Physiol Anim Nutr. 2008; 92: 272-283. doi: 10.1111/j.1439-0396.2007.00752.x

Khalil FM, Wagner WD, Goldberg IJ. Molecular Interactions Leading to Lipoprotein Retention and the Initiation of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2004; 24: 2211-2218. doi: 10.1161/01.ATV.0000147163.54024.70

Kramer-Guth A, Greiber S, Pavenstadt H, Quaschning T, Winkler K, Schollmeyer P, Wanner C. Interaction of Native and Oxidized Lipoprotein(a) with Human Mesangial Cells and Matrix. Kidney Int. 1996; 49: 1250-1261. doi: 10.1038/ki.1996.179

Williams KJ. Arterial Wall Chondroitin Sulfate Proteoglycans: Diverse Molecules with Distinct Roles in Lipoprotein Retention and Atherogenesis. Curr Opin Lipidol. 2001; 12: 477-487. doi: 10.1097/00041433-200110000-00002

Wiśniewska A, Olszanecki R, Toton-Zurańska J, Kuś K, Stachowicz A, Suski M et al. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice. Int J Mol Sci. 2017; 18: 1706. doi: 10.3390/ijms18081706

Choi HS, Harkewicz R, Lee JH, Boullier A, Almazan F, Li AC et al. Lipoprotein Accumulation in Macrophages Via Toll-Like Receptor-4-Dependent Fluid Phase Uptake. Circ. Res. 2009; 104: 1355-1363. doi: 10.1161/CIRCRESAHA.108.192880

Zhou SM, Chadipiralla K, Mendez AJ, Jaimes EA, Silverstein RL, Webster K, Raij L. Nicotine Potentiates Proatherogenic Effects of OxLDL by Stimulating and Upregulating Macrophage CD36 Signaling. Am J Physiol Heart Circ. Physiol. 2013; 305: H563-H574. doi: 10.1152/ajpheart.00042.2013

Levitan I, Volkov S, Subbaiah PV. Oxidized Ldl: Diversity, Patterns of Recognition, and Pathophysiology. Antioxid Redox Signal. 2010; 13: 39-75. doi: 10.1089/ars.2009.2733

Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized Low-Density Lipoprotein. Methods Mol Biol. 2010; 610: 403-417

Badrnya S, Assinger A, Volf I. Native High Density Lipoproteins (HDL) Interfere with Platelet Activation Induced by Oxidized Low Density Lipoproteins (OxLDL). Int J Mol Sci. 2013; 14: 10107. doi: 10.3390/ijms140510107

Cominacini L, Garbin U, Pasini AF, Davoli A, Campagnola M, Contessi GB et al. Antioxidants Inhibit the Expression of Intercellular Cell Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Induced by Oxidized LDL on Human Umbilical Vein Endothelial Cells. Free Radic. Biol. Med. 1997; 22: 117-127. doi: 10.1016/S0891-5849(96)00271-7

Barbieri SS, Cavalca V, Eligini S, Brambilla M, Caiani A, Tremoli E, Colli S. Apocynin Prevents Cyclooxygenase 2 Expression in Human Monocytes through Nadph Oxidase and Glutathione Redox-Dependent Mechanisms. Free Radic Biol Med. 2004; 37: 156-165. doi: 10.1016/j.freeradbiomed.2004.04.020

Carr AC, McCall MR, Frei B. Oxidation of LDL by Myeloperoxidase and Reactive Nitrogen Species: Reaction Pathways and Antioxidant Protection. Arterioscler Thromb Vasc Biol. 2000; 20: 1716-1723. doi: 10.1161/01.ATV.20.7.1716

Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD. Disruption of the 12/15-Lipoxygenase Gene Diminishes Atherosclerosis in Apo E-Deficient Mice. J Clin Investig. 1999; 103: 1597-1604. doi: 10.1172/JCI5897

Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARγ. Cell. 1998; 93: 229-240. doi: 10.1016/S0092-8674(00)81574-3

Park YM. CD36 Modulates Migration of Mouse and Human Macrophages in Response to Oxidized LDL and May Contribute to Macrophage Trapping in the Arterial Intima. J Clin Investig. 2009; 119: 136-145. doi: 10.1172/JCI35535

Park YM, Drazba JA, Vasanji A, Egelhoff T, Febbraio M, Silverstein RL. Oxidized LDL/CD36 Interaction Induces Loss of Cell Polarity and Inhibits Macrophage Locomotion. Mol Biol Cell. 2012; 23: 3057-3068. doi: 10.1091/mbc.E11-12-1051

Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and Atherosclerosis. Annu Rev Pathol. 2006; 1: 297-329. doi: 10.1146/annurev.pathol.1.110304.100100

Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ. Genetic Control of Inflammatory Gene Induction and NF-κB-Like Transcription Factor Activation in Response to an Atherogenic Diet in Mice. J Clin Investig. 1993; 91: 2572-2579. doi: 10.1172/JCI116495

Kohno M, Yokokawa K, Yasunari K, Minami M, Kano H, Hanehira T, Yoshikawa J. Induction by Lysophosphatidylcholine, a Major Phospholipid Component of Atherogenic Lipoproteins, of Human Coronary Artery Smooth Muscle Cell Migration. Circulation. 1998; 98: 353-359. doi: 10.1161/01.CIR.98.4.353

Lindner V, Lappi DA, Baird A, Majack RA, Reidy MA. Role of Basic Fibroblast Growth Factor in Vascular Lesion Formation. Circ. Res. 1991; 68: 106-113. doi: 10.1161/01.RES.68.1.106

Stiko-Rahm A, Hultgardh-Nilsson A, Regnstrom J, Hamsten A, Nilsson J. Native and Oxidized LDL Enhances Production of PDGF AA and the Surface Expression of PDGF Receptors in Cultured Human Smooth Muscle Cells. Arterioscler Thromb. 1992; 12: 1099-1109. doi: 10.1161/01.ATV.12.9.1099

Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP, Cala LA. The Role of Oxidized Low-Density Lipoproteins in Atherosclerosis: The Myths and the Facts. Mediat Inflamm. 2013; 13. doi: 10.1155/2013/714653

Loidl A, Claus R, Ingolic E, Deigner HP, Hermetter A. Role of Ceramide in Activation of Stress-Associated MAP Kinases by Minimally Modified LDL in Vascular Smooth Muscle Cells. Biochim Biophys Acta. 2004; 1690: 150-158. doi: 10.1016/j.bbadis.2004.06.003

Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M et al. Platelet CD36 Links Hyperlipidemia, Oxidant Stress and a Prothrombotic Phenotype. Nat Med. 2007; 13: 1086-1095. doi: 10.1038/nm1626

Wraith KS, Magwenzi S, Aburima A, Wen Y, Leake D, Naseem MK. Oxidized Low-Density Lipoproteins Induce Rapid Platelet Activation and Shape Change through Tyrosine Kinase and Rho Kinase-Signaling Pathways. Blood. 2013; 122: 580-589. doi: 10.1182/blood-2013-04-491688

Chen M, Kakutani M, Naruko T, Ueda M, Narumiya S, Masaki T, Sawamura T. Activation-Dependent Surface Expression of LOX-1 in Human Platelets. Biochem. Biophys. Res. Commun. 2001; 282: 153-158. doi: 10.1006/bbrc.2001.4516

Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and Atherosclerosis. Mediat. Inflamm. 2013. doi: 10.1155/2013/152786

Cominacini L, Pasini AF, Garbin U, Pastorino A, Rigoni A, Nava C et al. The Platelet-Endothelium Interaction Mediated by Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Reduces the Intracellular Concentration of Nitric Oxide in Endothelial Cells. J. Am. Coll. Cardiol. 2003; 41: 499-507. doi: 10.1016/S0735-1097(02)02811-5

Kakutani M, Masaki T, Sawamura T. A Platelet-Endothelium Interaction Mediated by Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1. Proc. Natl. Acad. Sci. USA. 2000; 97: 360-364. doi: 10.1073/pnas.97.1.360

Li LX, Chen JX, Liao DF, Yu L. Probucol Inhibits Oxidized-Low Density Lipoprotein-Induced Adhesion of Monocytes to Endothelial Cells by Reducing P-Selectin Synthesis in Vitro. Endothelium. 1998; 6: 1-8. doi: 10.3109/10623329809053400

Thorin E, Hamilton CA, Dominiczak MH, Reid JL. Chronic Exposure of Cultured Bovine Endothelial Cells to Oxidized LDL Abolishes Prostacyclin Release. Arterioscler. Thromb. 1994; 14: 453-459. doi: 10.1161/01.ATV.14.3.453

Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Cardiology: News, Opinions, Training. 2019; 7(2): 45-57. Russian (Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 1 //Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 45-57.) doi: 10.24411/2309-1908-2019-12005

Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 2. Cardiology: News, Opinions, Training. 2019; 7(4): 24-35. Russian (Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 2 //Кардиология: новости, мнения, обучение. 2019; 7(4): 24-35.) doi: 10.24411/2309-1908-2019-14004

Chaulin AM, Aleksandrov AG, Aleksandrova OS, Duplyakov DV. The role of the proprotein convertase subtilisin/kexin type 9 (pcsk9) in the pathophysiology of atherosclerosis. Medicine in Kuzbass. 2019. 18(4): 5-15. Russian (Чаулин А.М., Александров А.Г., Александрова О.С., Дупляков Д.В. Роль пропротеин-конвертазы субтилизин/кексин типа 9 (pcsk9) в патофизиологии атеросклероза //Медицина в Кузбассе. 2019. Т. 18, № 4. С. 5-15.) http://mednauki.ru/index.php/MK/article/view/359

Yu M, Tsai SF, Kuo YM. The Therapeutic Potential of Anti-Inflammatory Exerkines in the Treatment of Atherosclerosis. Int. J. Mol. Sci. 2017; 18: 1260. doi: 10.3390/ijms18061260

Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R et al. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010; 110: 911-916. doi: 10.1016/j.jada.2010.03.018

Orekhov AN, Bobryshev YV, Sobenin IA, Melnichenko AA, Chistiakov DA. Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease. Int. J. Mol. Sci. 2014; 15: 12807. doi: 10.3390/ijms150712807

Steyers C, Miller F. Endothelial Dysfunction in Chronic Inflammatory Diseases. Int. J. Mol. Sci. 2014; 15: 11324. doi: 10.3390/ijms150711324

Wang D, Wang Z, Zhang L, Wang Y. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediat. Inflamm. 2017. doi: 10.1155/2017/8135934

Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ. Nitric Oxide and Atherosclerosis: An Update. Nitric Oxide. 2006; 15: 265-279. doi: 10.1016/j.niox.2006.03.011

Ignarro LJ, Napoli C. Novel Features of Nitric Oxide, Endothelial Nitric Oxide Synthase, and Atherosclerosis. Curr. Atheroscler. Rep. 2005; 5: 17-23. doi: 10.1007/s11892-005-0062-8

Kawashima S, Mitsuhiro Y. Dysfunction of Endothelial Nitric Oxide Synthase and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 998-1005. doi: 10.1161/01.ATV.0000125114.88079.96

Lunte CE, Kissinger PT. Determination of Quinonoid Dihydrobiopterin by Liquid Chromatography and Electrochemical Detection. J. Chromatogr. 1984; 317: 407-412. doi: 10.1016/S0021-9673(01)91680-2

Vann LR, Payne SG, Edsall LC, Twitty S, Spiegel S, Milstien S. Involvement of Sphingosine Kinase in TNF-α-Stimulated Tetrahydrobiopterin Biosynthesis in C6 Glioma Cells. J. Biol. Chem. 2002; 277: 12649-12656. doi: 10.1074/jbc.M109111200

Fan J, Unoki H, Iwasa S, Watanabe T. Role of Endothelin-1 in Atherosclerosis. Ann. N. Y. Acad. Sci. 2000; 902: 84-94. doi: 10.1111/j.1749-6632.2000.tb06303.x

Pernow J, Shemyakin A, Bohm F. New Perspectives on Endothelin-1 in Atherosclerosis and Diabetes Mellitus. Life Sci. 2012; 91: 507-516. doi: 10.1016/j.lfs.2012.03.029

Sakurai T, Yanagisawa M, Masaki T. Molecular Characterization of Endothelin Receptors. Trends Pharmacol. Sci. 1992; 13: 103-108

Böhm F, Pernow J. The Importance of Endothelin-1 for Vascular Dysfunction in Cardiovascular Disease. Cardiovasc. Res. 2007; 76: 8-18. doi: 10.1016/j.cardiores.2007.06.004

Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A et al. Endothelin-1 Is an Autocrine/Paracrine Factor in the Mechanism of Angiotensin II-Induced Hypertrophy in Cultured Rat Cardiomyocytes. J. Clin. Investig. 1993; 92: 398-403. doi: 10.1172/JCI116579

Iwasa S, Fan J, Shimokama T, Nagata M, Watanabe T. Increased Immunoreactivity of Endothelin-1 and Endothelin B Receptor in Human Atherosclerotic Lesions. A Possible Role in Atherogenesis. Atherosclerosis. 1999; 146: 93-100. doi: 10.1016/S0021-9150(99)00134-3

Ivanova EA, Orekhov AN. The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis. Int. J. Mol. Sci. 2016; 17: 193. doi: 10.3390/ijms17020193

Filep JG, Sirois MG, Foldes-Filep E, Rousseau A, Plante GE, Fournier A et al. Enhancement by Endothelin-1 of Microvascular Permeability Via the Activation of ETA Receptors. Br. J. Pharmacol. 1993; 109: 880-886. doi: 10.1111/j.1476-5381.1993.tb13657.x

Swerlick AR, Lawley TJ. Role of Microvascular Endothelial Cells in Inflammation. J. Investig. Dermatol. 1993; 100: S111-S115. doi: 10.1038/jid.1993.33


Статистика просмотров

Загрузка метрик ...

Ссылки

  • На текущий момент ссылки отсутствуют.